Features and mechanisms of sea surface salinity intraseasonal variability in the Northern Bay of Bengal

IF 4 3区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Geoscience Letters Pub Date : 2024-04-18 DOI:10.1186/s40562-024-00334-w
Rong Cui, Xuhua Cheng, Wei Duan, Long Jiang, Yifei Zhou
{"title":"Features and mechanisms of sea surface salinity intraseasonal variability in the Northern Bay of Bengal","authors":"Rong Cui, Xuhua Cheng, Wei Duan, Long Jiang, Yifei Zhou","doi":"10.1186/s40562-024-00334-w","DOIUrl":null,"url":null,"abstract":"In response to abundant freshwater input from rainfall and river discharge, the northern Bay of Bengal (BoB) is featured by low sea surface salinity (SSS) and strong intraseasonal variability (ISV). This study investigates the characteristic and dynamic mechanisms of SSS ISV in the northern BoB based on satellite observations and the output of Simple Ocean Data Assimilation (SODA). The strong SSS ISV is mainly concentrated near the mouth of the Ganges–Brahmaputra River and along the east coast of India, where the horizontal salinity gradient varies greatly. SSS ISV in the northern BoB is notably in phase with freshwater transport, which peaks from July to November. The contribution of riverine freshwater is significant both geographically and temporally. The SSS budget analysis indicates that the horizontal advection plays a dominant role in SSS ISV. Once currents cross the salinity field, large horizontal advection anomalies become important and favor SSS ISV. Altered SSS patterns can impact water density, potentially influencing the strength and direction of currents. This, in turn, may have cascading effects on local and regional climate patterns.","PeriodicalId":48596,"journal":{"name":"Geoscience Letters","volume":"38 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoscience Letters","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1186/s40562-024-00334-w","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In response to abundant freshwater input from rainfall and river discharge, the northern Bay of Bengal (BoB) is featured by low sea surface salinity (SSS) and strong intraseasonal variability (ISV). This study investigates the characteristic and dynamic mechanisms of SSS ISV in the northern BoB based on satellite observations and the output of Simple Ocean Data Assimilation (SODA). The strong SSS ISV is mainly concentrated near the mouth of the Ganges–Brahmaputra River and along the east coast of India, where the horizontal salinity gradient varies greatly. SSS ISV in the northern BoB is notably in phase with freshwater transport, which peaks from July to November. The contribution of riverine freshwater is significant both geographically and temporally. The SSS budget analysis indicates that the horizontal advection plays a dominant role in SSS ISV. Once currents cross the salinity field, large horizontal advection anomalies become important and favor SSS ISV. Altered SSS patterns can impact water density, potentially influencing the strength and direction of currents. This, in turn, may have cascading effects on local and regional climate patterns.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
孟加拉湾北部海面盐度季节内变化的特征和机制
由于降雨和河流排放带来的大量淡水输入,孟加拉湾北部海面盐度(SSS)偏低,季内变率(ISV)较大。本研究基于卫星观测数据和简单海洋数据同化(SODA)输出结果,研究了孟加拉湾北部海表盐度 ISV 的特征和动态机制。强烈的 SSS ISV 主要集中在恒河-布拉马普特拉河河口附近和印度东海岸,那里的水平盐度梯度变化很大。波罗的海北部的 SSS ISV 与淡水输送明显同步,淡水输送在 7 月至 11 月达到高峰。河流淡水在地理和时间上的贡献都很大。SSS 预算分析表明,水平平流在 SSS ISV 中起主导作用。一旦洋流穿过盐度场,巨大的水平平流异常就变得非常重要,并有利于 SSS ISV。SSS 模式的改变会影响水体密度,从而可能影响洋流的强度和方向。这反过来又会对当地和区域气候模式产生连带影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Geoscience Letters
Geoscience Letters Earth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
4.90
自引率
2.50%
发文量
42
审稿时长
25 weeks
期刊介绍: Geoscience Letters is the official journal of the Asia Oceania Geosciences Society, and a fully open access journal published under the SpringerOpen brand. The journal publishes original, innovative and timely research letter articles and concise reviews on studies of the Earth and its environment, the planetary and space sciences. Contributions reflect the eight scientific sections of the AOGS: Atmospheric Sciences, Biogeosciences, Hydrological Sciences, Interdisciplinary Geosciences, Ocean Sciences, Planetary Sciences, Solar and Terrestrial Sciences, and Solid Earth Sciences. Geoscience Letters focuses on cutting-edge fundamental and applied research in the broad field of the geosciences, including the applications of geoscience research to societal problems. This journal is Open Access, providing rapid electronic publication of high-quality, peer-reviewed scientific contributions.
期刊最新文献
The effectiveness of machine learning methods in the nonlinear coupled data assimilation Volcanic activity around Taipei, Taiwan: new data and perspectives on the Tatun Volcano Group A snapshot of the climate in the Middle Pleistocene inferred from a stalagmite from central Japan The crustal deformation mechanism of southern Chuandian block: constrained by S wave velocity and its azimuthal anisotropy Surface air temperature anomalies over Antarctica and the Southern ocean induced by interactions between the interdecadal Pacific oscillation and Atlantic multidecadal oscillation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1