Rounding-Error Analysis of Multigrid [math]-Cycles

IF 3 2区 数学 Q1 MATHEMATICS, APPLIED SIAM Journal on Scientific Computing Pub Date : 2024-04-19 DOI:10.1137/23m1582898
Stephen F. McCormick, Rasmus Tamstorf
{"title":"Rounding-Error Analysis of Multigrid [math]-Cycles","authors":"Stephen F. McCormick, Rasmus Tamstorf","doi":"10.1137/23m1582898","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Scientific Computing, Ahead of Print. <br/> Abstract. Earlier work on rounding-error analysis of multigrid was restricted to cycles that used one relaxation step before coarsening and none afterwards. The present paper extends this analysis to two-grid methods that use one relaxation step both before and after coarsening. The analysis is based on floating point arithmetic and focuses on a two-grid scheme that is perturbed on the coarse grid to allow for an approximate coarse-grid solve. Leveraging previously published results, this two-grid theory can then be extended to general [math]-cycles, as well as full multigrid. It can also be extended to mixed-precision iterative refinement based on these cycles. An added benefit of the theory here over previous work is that it is obtained in a more organized, transparent, and simpler way.","PeriodicalId":49526,"journal":{"name":"SIAM Journal on Scientific Computing","volume":"122 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Scientific Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1582898","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Scientific Computing, Ahead of Print.
Abstract. Earlier work on rounding-error analysis of multigrid was restricted to cycles that used one relaxation step before coarsening and none afterwards. The present paper extends this analysis to two-grid methods that use one relaxation step both before and after coarsening. The analysis is based on floating point arithmetic and focuses on a two-grid scheme that is perturbed on the coarse grid to allow for an approximate coarse-grid solve. Leveraging previously published results, this two-grid theory can then be extended to general [math]-cycles, as well as full multigrid. It can also be extended to mixed-precision iterative refinement based on these cycles. An added benefit of the theory here over previous work is that it is obtained in a more organized, transparent, and simpler way.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多网格[数学]循环的舍入误差分析
SIAM 科学计算期刊》,提前印刷。 摘要。早期的多网格舍入误差分析工作仅限于在粗化前使用一个松弛步长、粗化后不使用任何松弛步长的循环。本文将这一分析扩展到粗化前后均使用一个松弛步长的双网格方法。分析以浮点运算为基础,重点关注在粗网格上进行扰动以实现近似粗网格求解的双网格方案。利用以前发表的结果,这种双网格理论可以扩展到一般的[math]循环以及全多网格。它还可以扩展到基于这些循环的混合精度迭代细化。与之前的工作相比,本文理论的另一个好处是,它是以一种更有条理、更透明、更简单的方式获得的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.50
自引率
3.20%
发文量
209
审稿时长
1 months
期刊介绍: The purpose of SIAM Journal on Scientific Computing (SISC) is to advance computational methods for solving scientific and engineering problems. SISC papers are classified into three categories: 1. Methods and Algorithms for Scientific Computing: Papers in this category may include theoretical analysis, provided that the relevance to applications in science and engineering is demonstrated. They should contain meaningful computational results and theoretical results or strong heuristics supporting the performance of new algorithms. 2. Computational Methods in Science and Engineering: Papers in this section will typically describe novel methodologies for solving a specific problem in computational science or engineering. They should contain enough information about the application to orient other computational scientists but should omit details of interest mainly to the applications specialist. 3. Software and High-Performance Computing: Papers in this category should concern the novel design and development of computational methods and high-quality software, parallel algorithms, high-performance computing issues, new architectures, data analysis, or visualization. The primary focus should be on computational methods that have potentially large impact for an important class of scientific or engineering problems.
期刊最新文献
Finite Element Approximation for the Delayed Generalized Burgers–Huxley Equation with Weakly Singular Kernel: Part II Nonconforming and DG Approximation Interpolating Parametrized Quantum Circuits Using Blackbox Queries Robust Iterative Method for Symmetric Quantum Signal Processing in All Parameter Regimes The Sparse-Grid-Based Adaptive Spectral Koopman Method Bound-Preserving Framework for Central-Upwind Schemes for General Hyperbolic Conservation Laws
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1