A Reliable Iteration Algorithm for One-Bit Compressive Sensing on the Unit Sphere

Pub Date : 2024-04-19 DOI:10.1007/s10255-024-1046-2
Yan-cheng Lu, Ning Bi, An-hua Wan
{"title":"A Reliable Iteration Algorithm for One-Bit Compressive Sensing on the Unit Sphere","authors":"Yan-cheng Lu,&nbsp;Ning Bi,&nbsp;An-hua Wan","doi":"10.1007/s10255-024-1046-2","DOIUrl":null,"url":null,"abstract":"<div><p>The one-bit compressed sensing problem is of fundamental importance in many areas, such as wireless communication, statistics, and so on. However, the optimization of one-bit problem constrained on the unit sphere lacks an algorithm with rigorous mathematical proof of convergence and validity. In this paper, an iteration algorithm is established based on difference-of-convex algorithm for the one-bit compressed sensing problem constrained on the unit sphere, with iterating formula </p><div><div><span>$${x^{k + 1}} = \\mathop {\\arg \\min }\\limits_{x \\in \\,C} \\{ ||x|{|_1} + {\\eta _1}||{x^k}|{|_1}\\max (||x||_2^2,1) - 2{\\eta _2}||{x^k}|{|_1}\\langle x,{x^k}\\rangle \\} ,$$</span></div></div><p> where <i>C</i> is the convex cone generated by the one-bit measurements and <span>\\({\\eta _1} &gt; {\\eta _2} &gt; {1 \\over 2}\\)</span>. The new algorithm is proved to converge as long as the initial point is on the unit sphere and accords with the measurements, and the convergence to the global minimum point of the <i>ℓ</i><sub>1</sub> norm is discussed.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-024-1046-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The one-bit compressed sensing problem is of fundamental importance in many areas, such as wireless communication, statistics, and so on. However, the optimization of one-bit problem constrained on the unit sphere lacks an algorithm with rigorous mathematical proof of convergence and validity. In this paper, an iteration algorithm is established based on difference-of-convex algorithm for the one-bit compressed sensing problem constrained on the unit sphere, with iterating formula

$${x^{k + 1}} = \mathop {\arg \min }\limits_{x \in \,C} \{ ||x|{|_1} + {\eta _1}||{x^k}|{|_1}\max (||x||_2^2,1) - 2{\eta _2}||{x^k}|{|_1}\langle x,{x^k}\rangle \} ,$$

where C is the convex cone generated by the one-bit measurements and \({\eta _1} > {\eta _2} > {1 \over 2}\). The new algorithm is proved to converge as long as the initial point is on the unit sphere and accords with the measurements, and the convergence to the global minimum point of the 1 norm is discussed.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
单位球上一位压缩传感的可靠迭代算法
单比特压缩传感问题在无线通信、统计等许多领域都具有重要的基础性意义。然而,受单位球面约束的单比特问题的优化缺乏一种具有严格收敛性和有效性数学证明的算法。本文针对单位球上约束的单比特压缩传感问题,建立了一种基于差分凸算法的迭代算法,迭代公式为 $${x^{k + 1}} = \mathop {\arg \min }\limits_{x \in \,C}\{ ||x|{|_1}+ {\eta _1}||{x^k}|{|_1}\max (||x||_2^2,1) - 2{\eta _2}||{x^k}|{|_1}\langle x,{x^k}\rangle\}$$ 其中 C 是由一位测量和 \({\eta _1} > {\eta _2} > {1 \over 2}\) 生成的凸锥。只要初始点在单位球面上并与测量结果一致,新算法就能收敛,并讨论了收敛到 ℓ1 准则全局最小点的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1