Tuning crystal size and inhibiting aggregation by adding guanidinoacetic acid in ZSM-5 zeolite synthesis for catalysing methanol-to-olefin reaction

IF 2.5 4区 材料科学 Q2 CHEMISTRY, APPLIED Journal of Porous Materials Pub Date : 2024-04-20 DOI:10.1007/s10934-024-01615-7
Cunmei Dong, Hongjiang Li, Shenmin Li, Yingna Cui, Xinping Wang
{"title":"Tuning crystal size and inhibiting aggregation by adding guanidinoacetic acid in ZSM-5 zeolite synthesis for catalysing methanol-to-olefin reaction","authors":"Cunmei Dong,&nbsp;Hongjiang Li,&nbsp;Shenmin Li,&nbsp;Yingna Cui,&nbsp;Xinping Wang","doi":"10.1007/s10934-024-01615-7","DOIUrl":null,"url":null,"abstract":"<div><p>Nanosized ZSM-5 zeolite with high-quality is highly desired in industrial application. This paper reports an approach of rapid synthesis of this type zeolite, being realized by crystallizing gels with the Si/Al atomic ratio of 12.5–80 at 170 ℃ for 12 h under assistance of guanidinoacetic acid (GAA). As a result, the zeolite obtained from the synthesis possesses little crystal size (120–220 nm), high-quality and good monodispersity. Being associated with the superior morphology and structure, the zeolite displayed not only longer one-pass catalytic lifetime but also much higher regeneration stability in methanol-to-olefin reaction, comparing with the zeolite synthesized without GAA addition.</p></div>","PeriodicalId":660,"journal":{"name":"Journal of Porous Materials","volume":"31 4","pages":"1477 - 1488"},"PeriodicalIF":2.5000,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Porous Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10934-024-01615-7","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Nanosized ZSM-5 zeolite with high-quality is highly desired in industrial application. This paper reports an approach of rapid synthesis of this type zeolite, being realized by crystallizing gels with the Si/Al atomic ratio of 12.5–80 at 170 ℃ for 12 h under assistance of guanidinoacetic acid (GAA). As a result, the zeolite obtained from the synthesis possesses little crystal size (120–220 nm), high-quality and good monodispersity. Being associated with the superior morphology and structure, the zeolite displayed not only longer one-pass catalytic lifetime but also much higher regeneration stability in methanol-to-olefin reaction, comparing with the zeolite synthesized without GAA addition.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在催化甲醇制烯烃反应的 ZSM-5 沸石合成中添加胍基乙酸调节晶体尺寸并抑制聚集
高质量的纳米级 ZSM-5 沸石在工业应用中备受青睐。本文报道了一种快速合成该类型沸石的方法,该方法是在胍基乙酸(GAA)的辅助下,将硅/铝原子比为 12.5-80 的凝胶在 170 ℃ 下结晶 12 小时。因此,合成得到的沸石晶体尺寸小(120-220 nm),质量高,单分散性好。与未添加 GAA 的沸石相比,这种沸石不仅具有更长的单程催化寿命,而且在甲醇制烯烃反应中具有更高的再生稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Porous Materials
Journal of Porous Materials 工程技术-材料科学:综合
CiteScore
4.80
自引率
7.70%
发文量
203
审稿时长
2.6 months
期刊介绍: The Journal of Porous Materials is an interdisciplinary and international periodical devoted to all types of porous materials. Its aim is the rapid publication of high quality, peer-reviewed papers focused on the synthesis, processing, characterization and property evaluation of all porous materials. The objective is to establish a unique journal that will serve as a principal means of communication for the growing interdisciplinary field of porous materials. Porous materials include microporous materials with 50 nm pores. Examples of microporous materials are natural and synthetic molecular sieves, cationic and anionic clays, pillared clays, tobermorites, pillared Zr and Ti phosphates, spherosilicates, carbons, porous polymers, xerogels, etc. Mesoporous materials include synthetic molecular sieves, xerogels, aerogels, glasses, glass ceramics, porous polymers, etc.; while macroporous materials include ceramics, glass ceramics, porous polymers, aerogels, cement, etc. The porous materials can be crystalline, semicrystalline or noncrystalline, or combinations thereof. They can also be either organic, inorganic, or their composites. The overall objective of the journal is the establishment of one main forum covering the basic and applied aspects of all porous materials.
期刊最新文献
Correction: One-step synthesis of CuO/MCM-41 nanocomposites and their application in photocatalytic degradation of dyes Modification of SBA-15 for stabilizing supported oxides Lotus leaf-derived capacitive carbon for zinc-ion hybrid supercapacitors prepared by one-step molten salt carbonization Influence of various templates on the performance of MFI zeolite in catalytic synthesis of trioxane Facile synthesis of copper sulfide loaded mesoporous organosilica nanospheres with a triple-shelled hollow structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1