A Block Householder–Based Algorithm for the QR Decomposition of Hierarchical Matrices

IF 1.5 2区 数学 Q2 MATHEMATICS, APPLIED SIAM Journal on Matrix Analysis and Applications Pub Date : 2024-04-19 DOI:10.1137/22m1544555
Vincent Griem, Sabine Le Borne
{"title":"A Block Householder–Based Algorithm for the QR Decomposition of Hierarchical Matrices","authors":"Vincent Griem, Sabine Le Borne","doi":"10.1137/22m1544555","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Matrix Analysis and Applications, Volume 45, Issue 2, Page 847-874, June 2024. <br/> Abstract. Hierarchical matrices are dense but data-sparse matrices that use low-rank factorizations of suitable submatrices to reduce the storage and computational cost to linear-polylogarithmic complexity. In this paper, we propose a new approach to efficiently compute QR factorizations in the hierarchical matrix format based on block Householder transformations. To prevent unnecessarily high ranks in the resulting factors and to increase speed and accuracy, the algorithm meticulously tracks for which intermediate results low-rank factorizations are available. We also use a special storage scheme for the block Householder reflector to further reduce computational and storage costs. Numerical tests for two- and three-dimensional Laplacian boundary element matrices, different radial basis function kernel matrices, and matrices of typical hierarchical matrix structures but filled with random entries illustrate the performance of the new algorithm in comparison to some other QR algorithms for hierarchical matrices from the literature.","PeriodicalId":49538,"journal":{"name":"SIAM Journal on Matrix Analysis and Applications","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Matrix Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m1544555","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Matrix Analysis and Applications, Volume 45, Issue 2, Page 847-874, June 2024.
Abstract. Hierarchical matrices are dense but data-sparse matrices that use low-rank factorizations of suitable submatrices to reduce the storage and computational cost to linear-polylogarithmic complexity. In this paper, we propose a new approach to efficiently compute QR factorizations in the hierarchical matrix format based on block Householder transformations. To prevent unnecessarily high ranks in the resulting factors and to increase speed and accuracy, the algorithm meticulously tracks for which intermediate results low-rank factorizations are available. We also use a special storage scheme for the block Householder reflector to further reduce computational and storage costs. Numerical tests for two- and three-dimensional Laplacian boundary element matrices, different radial basis function kernel matrices, and matrices of typical hierarchical matrix structures but filled with random entries illustrate the performance of the new algorithm in comparison to some other QR algorithms for hierarchical matrices from the literature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分层矩阵 QR 分解的基于分块豪斯德的算法
SIAM 矩阵分析与应用期刊》,第 45 卷,第 2 期,第 847-874 页,2024 年 6 月。 摘要层次矩阵是高密度但数据稀疏的矩阵,它使用合适子矩阵的低秩因子来将存储和计算成本降低到线性-多对数复杂度。在本文中,我们提出了一种基于分块豪斯赫德(Householder)变换的新方法,以高效计算分层矩阵格式中的 QR 因式分解。为了防止计算出的因数出现不必要的高阶,并提高速度和准确性,该算法会仔细跟踪哪些中间结果可以进行低阶因式分解。我们还为块豪斯赫德反射器采用了一种特殊的存储方案,以进一步降低计算和存储成本。对二维和三维拉普拉斯边界元素矩阵、不同径向基函数核矩阵以及典型分层矩阵结构但充满随机条目的矩阵进行的数值测试,说明了新算法与文献中其他一些针对分层矩阵的 QR 算法相比的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.90
自引率
6.70%
发文量
61
审稿时长
6-12 weeks
期刊介绍: The SIAM Journal on Matrix Analysis and Applications contains research articles in matrix analysis and its applications and papers of interest to the numerical linear algebra community. Applications include such areas as signal processing, systems and control theory, statistics, Markov chains, and mathematical biology. Also contains papers that are of a theoretical nature but have a possible impact on applications.
期刊最新文献
On Substochastic Inverse Eigenvalue Problems with the Corresponding Eigenvector Constraints Low-Rank Plus Diagonal Approximations for Riccati-Like Matrix Differential Equations Multichannel Frequency Estimation with Constant Amplitude via Convex Structured Low-Rank Approximation Kronecker Product of Tensors and Hypergraphs: Structure and Dynamics Growth Factors of Orthogonal Matrices and Local Behavior of Gaussian Elimination with Partial and Complete Pivoting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1