InstaHMR: Instance-Aware One-Stage Multi-Person Human Mesh Recovery

Xinyao Liao;Chen Zhang;Jianyao Xu;Wanjuan Su;Zhi Chen;Wenbing Tao
{"title":"InstaHMR: Instance-Aware One-Stage Multi-Person Human Mesh Recovery","authors":"Xinyao Liao;Chen Zhang;Jianyao Xu;Wanjuan Su;Zhi Chen;Wenbing Tao","doi":"10.1109/TVCG.2024.3391764","DOIUrl":null,"url":null,"abstract":"Human mesh recovery aims to estimate all human meshes within a given image. In this article, we propose an Instance-aware Multi-person 3D Human Mesh Recovery (InstaHMR) network based on the one-stage framework. Compared to former one-stage methods, instance-aware single person feature is exploited to represent more accurate human mesh. Specifically, we propose the Contextual Instance Guidance (CIG) module which generates instance-aware single person feature by leveraging spatial and channel attention operations. In this way, it preserves more instance-specific information compared to the pixel-level feature used in some existing one-stage methods. Besides, we further introduce two auxiliary losses for better mesh recovery, namely the Human Triplet Planes (HTP) loss and the T-pose Shape (TS) loss. The HTP loss encourages the model to capture subtle differences in human joint positions, while the TS loss facilitates the learning of abstract shape parameters. By incorporating these advancements, our model achieves state-of-the-art results on four multi-person datasets.","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":"31 7","pages":"3929-3941"},"PeriodicalIF":6.5000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on visualization and computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10505811/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Human mesh recovery aims to estimate all human meshes within a given image. In this article, we propose an Instance-aware Multi-person 3D Human Mesh Recovery (InstaHMR) network based on the one-stage framework. Compared to former one-stage methods, instance-aware single person feature is exploited to represent more accurate human mesh. Specifically, we propose the Contextual Instance Guidance (CIG) module which generates instance-aware single person feature by leveraging spatial and channel attention operations. In this way, it preserves more instance-specific information compared to the pixel-level feature used in some existing one-stage methods. Besides, we further introduce two auxiliary losses for better mesh recovery, namely the Human Triplet Planes (HTP) loss and the T-pose Shape (TS) loss. The HTP loss encourages the model to capture subtle differences in human joint positions, while the TS loss facilitates the learning of abstract shape parameters. By incorporating these advancements, our model achieves state-of-the-art results on four multi-person datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
InstaHMR:实例感知的单阶段多人人体网状复原
人体网格恢复的目的是估计给定图像中的所有人体网格。在本文中,我们提出了一个基于单阶段框架的实例感知的多人三维人体网格恢复(InstaHMR)网络。与以往的单阶段方法相比,该方法利用了实例感知的单人特征来表示更精确的人体网格。具体来说,我们提出了上下文实例指导(CIG)模块,该模块通过利用空间和通道注意操作来生成实例感知的单个人特征。通过这种方式,与某些现有单阶段方法中使用的像素级特性相比,它保留了更多特定于实例的信息。此外,为了更好地恢复网格,我们进一步引入了两种辅助损失,即HTP (Human Triplet Planes)损失和TS (T-pose Shape)损失。HTP损失有助于模型捕捉人体关节位置的细微差异,而TS损失有助于抽象形状参数的学习。通过整合这些进步,我们的模型在四个多人数据集上实现了最先进的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Multimodal Framework for Understanding Collaborative Design Processes. DAVA: Decoding Art With Visual Analytics Through Feature Modeling and Multi-Agent Collaboration. ReVISit 2: A Full Experiment Life Cycle User Study Framework. Incorporating Drone into Mixed Reality for Enhanced Remote Collaboration: A User Study on Inspection Task. Parallel Clusters: Visual Comparison of Embeddings Based on Multi-Scale Neighborhood Analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1