Jingru Yang, Bowen Li, Wanqing Dong, Xiaorong Gao, Yanfei Lin
{"title":"Time-varying EEG networks of major depressive disorder during facial emotion tasks","authors":"Jingru Yang, Bowen Li, Wanqing Dong, Xiaorong Gao, Yanfei Lin","doi":"10.1007/s11571-024-10111-2","DOIUrl":null,"url":null,"abstract":"<p>Depression is a mental disease involved in emotional and cognitive impairments. Neuroimaging studies have found abnormalities in the structure and functional network of brain for major depressive disorder (MDD).However, neural mechanism of the dynamic connectivity for emotional attention of MDD is currently insufficient. In this study, event-related potentials (ERP) and time-varying network were analyzed to investigate attention bias and corresponding neural mechanisms induced by emotional facial stimuli. In the ERP results, N100 components in MDD had shorter latencies and smaller amplitudes than those in healthy controls (HC) for sad and fear faces. The P200 amplitudes induced by sad faces in MDD were significantly higher than those induced by happy and fear faces in MDD, and those induced by sad faces in HC. It was indicated that MDD patients had attention bias towards sad faces. For the time-varying network analysis, adaptive directed transfer function was explored to construct dynamic network connectivity. MDD patients had stronger information outflow from the right frontal region and weaker information outflow from parieto-occipital regions for sad faces. In addition, the network properties of sad faces were significantly correlated with PHQ-9 scores for MDD group. These findings may provide further explanation for understanding the MDD’s neural mechanism of attention bias during facial emotional tasks.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"13 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-024-10111-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Depression is a mental disease involved in emotional and cognitive impairments. Neuroimaging studies have found abnormalities in the structure and functional network of brain for major depressive disorder (MDD).However, neural mechanism of the dynamic connectivity for emotional attention of MDD is currently insufficient. In this study, event-related potentials (ERP) and time-varying network were analyzed to investigate attention bias and corresponding neural mechanisms induced by emotional facial stimuli. In the ERP results, N100 components in MDD had shorter latencies and smaller amplitudes than those in healthy controls (HC) for sad and fear faces. The P200 amplitudes induced by sad faces in MDD were significantly higher than those induced by happy and fear faces in MDD, and those induced by sad faces in HC. It was indicated that MDD patients had attention bias towards sad faces. For the time-varying network analysis, adaptive directed transfer function was explored to construct dynamic network connectivity. MDD patients had stronger information outflow from the right frontal region and weaker information outflow from parieto-occipital regions for sad faces. In addition, the network properties of sad faces were significantly correlated with PHQ-9 scores for MDD group. These findings may provide further explanation for understanding the MDD’s neural mechanism of attention bias during facial emotional tasks.
期刊介绍:
Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models.
The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome.
The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged.
1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics.
2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages.
3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.