SVD: A Scalable Virtual Machine Disk Format

IF 5.3 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Cloud Computing Pub Date : 2024-04-19 DOI:10.1109/TCC.2024.3391390
Kevin Nguetchouang;Stella Bitchebe;Theophile Dubuc;Mar Callau-Zori;Christophe Hubert;Pierre Olivier;Alain Tchana
{"title":"SVD: A Scalable Virtual Machine Disk Format","authors":"Kevin Nguetchouang;Stella Bitchebe;Theophile Dubuc;Mar Callau-Zori;Christophe Hubert;Pierre Olivier;Alain Tchana","doi":"10.1109/TCC.2024.3391390","DOIUrl":null,"url":null,"abstract":"Contrary to CPU, memory, and network, disk virtualization is peculiar, for which virtualization through direct access is impossible. We study virtual disk utilization in a large-scale public cloud and observe the presence of long snapshot chains, sometimes composed of up to 1,000 files. We then demonstrate, through experimental measurements, that such long chains lead to virtualized storage performance and memory footprint scalability issues. To address these problems, we present \n<sc>SVD</small>\n, a new virtual disk format. We implemented \n<sc>SVD</small>\n by extending Qcow2, a popular format, and its Qemu driver. We evaluated our prototype, demonstrating that it brings significant performance enhancements and memory footprint reduction. For example, \n<sc>SVD</small>\n improves the throughput of RocksDB by about 48% on a snapshot chain of length 500. \n<sc>SVD</small>\n also reduces the memory footprint by 15×.","PeriodicalId":13202,"journal":{"name":"IEEE Transactions on Cloud Computing","volume":"12 2","pages":"684-696"},"PeriodicalIF":5.3000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cloud Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10505727/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Contrary to CPU, memory, and network, disk virtualization is peculiar, for which virtualization through direct access is impossible. We study virtual disk utilization in a large-scale public cloud and observe the presence of long snapshot chains, sometimes composed of up to 1,000 files. We then demonstrate, through experimental measurements, that such long chains lead to virtualized storage performance and memory footprint scalability issues. To address these problems, we present SVD , a new virtual disk format. We implemented SVD by extending Qcow2, a popular format, and its Qemu driver. We evaluated our prototype, demonstrating that it brings significant performance enhancements and memory footprint reduction. For example, SVD improves the throughput of RocksDB by about 48% on a snapshot chain of length 500. SVD also reduces the memory footprint by 15×.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SVD:可扩展的虚拟机磁盘格式
与 CPU、内存和网络相反,磁盘虚拟化是一种特殊的虚拟化,不可能通过直接访问实现虚拟化。我们研究了大规模公共云中的虚拟磁盘利用情况,观察到存在长快照链,有时由多达 1,000 个文件组成。然后,我们通过实验测量证明,这种长链会导致虚拟化存储性能和内存占用可扩展性问题。为了解决这些问题,我们提出了一种新的虚拟磁盘格式 SVD。我们通过扩展流行格式 Qcow2 及其 Qemu 驱动程序来实现 SVD。我们对原型进行了评估,结果表明它能显著提高性能并减少内存占用。例如,在长度为 500 的快照链上,SVD 将 RocksDB 的吞吐量提高了约 48%。SVD 还将内存占用减少了 15 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Cloud Computing
IEEE Transactions on Cloud Computing Computer Science-Software
CiteScore
9.40
自引率
6.20%
发文量
167
期刊介绍: The IEEE Transactions on Cloud Computing (TCC) is dedicated to the multidisciplinary field of cloud computing. It is committed to the publication of articles that present innovative research ideas, application results, and case studies in cloud computing, focusing on key technical issues related to theory, algorithms, systems, applications, and performance.
期刊最新文献
COCSN: A Multi-Tiered Cascaded Optical Circuit Switching Network for Data Center Aggregate Monitoring for Geo-Distributed Kubernetes Cluster Federations Group Formation and Sampling in Group-Based Hierarchical Federated Learning HEXO: Offloading Long-Running Compute- and Memory-Intensive Workloads on Low-Cost, Low-Power Embedded Systems Joint Offloading and Resource Allocation for Collaborative Cloud Computing With Dependent Subtask Scheduling on Multi-Core Server
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1