A novel approach to making composite photocatalyst by peroxide sol–gel deposition of TiO2 on Al2O3 and ZrO2 nanosheets

IF 1.5 4区 工程技术 Q3 ENGINEERING, CHEMICAL Brazilian Journal of Chemical Engineering Pub Date : 2024-04-19 DOI:10.1007/s43153-024-00461-z
Liudmila I. Istomina, Konstantin A. Sakharov, Ekaterina I. Vikulina, Yao Yan, Roman D. Solovov, Sergey A. Zverev, Ronn Goei, Sergey V. Andreev
{"title":"A novel approach to making composite photocatalyst by peroxide sol–gel deposition of TiO2 on Al2O3 and ZrO2 nanosheets","authors":"Liudmila I. Istomina, Konstantin A. Sakharov, Ekaterina I. Vikulina, Yao Yan, Roman D. Solovov, Sergey A. Zverev, Ronn Goei, Sergey V. Andreev","doi":"10.1007/s43153-024-00461-z","DOIUrl":null,"url":null,"abstract":"<p>Photocatalysts are promising materials for removing organic dyes from the environment. TiO<sub>2</sub> is one of the most extensively studied photocatalysts; however, its application in the photocatalytic industry has yet to be realized. We contend that fundamental research and the quest for synergy are essential in this field. One approach to enhancing the efficiency of TiO<sub>2</sub> is deposition onto porous inert substrates. In this work, we introduce a novel approach by applying TiO<sub>2</sub> onto the surfaces of porous nanosized Al<sub>2</sub>O<sub>3</sub> and ZrO<sub>2</sub>. Employing two soft chemistry methods — the glycol-citrate route for creating a porous and inert substrate and the peroxide route for depositing a TiO<sub>2</sub> layer — we have created a technology that allows us to vary the TiO<sub>2</sub> concentration on the inert matrix. The developed composite photocatalysts demonstrate competitive efficacy in disintegrating the model dye methylene blue. The most effective photocatalyst was Al<sub>2</sub>O<sub>3</sub>@TiO<sub>2</sub> (0.26 wt.%) at 1200 °C. This material degrades approximately 98.2% of the methylene blue in 5 h, while nanosized TiO<sub>2</sub> degrades only 33.5% of the dye under the same conditions. The photocatalytic activity of the material is affected by the concentration of TiO<sub>2</sub> in the material due to the dilution of the peroxide solution. Notably, a decrease in the TiO<sub>2</sub> concentration enhances the photocatalytic activity of the composite. We assumed that titanium dioxide was distributed in thinner layers at lower concentrations, which increased the area of effective contact and photocatalytic activity. The most efficient aluminum and zirconium oxides decorated with titanium dioxide had surface areas of 12.7 and 16.9 m<sup>2</sup>/g, respectively, while Al<sub>2</sub>O<sub>3</sub> and ZrO<sub>2</sub> had surface areas of 31.7 and 34.3 m<sup>2</sup>/g, respectively. Therefore, the decrease in methylene blue concentration was caused by photocatalysis but not by the sorption mechanism. The decomposition of methylene blue in all the samples is consistent with a pseudo-second-order photocatalysis model. The findings of this work lie in the precise application of TiO<sub>2</sub> onto the surfaces of inert matrices, which is valuable for developing photocatalytic materials.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":9194,"journal":{"name":"Brazilian Journal of Chemical Engineering","volume":"78 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s43153-024-00461-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Photocatalysts are promising materials for removing organic dyes from the environment. TiO2 is one of the most extensively studied photocatalysts; however, its application in the photocatalytic industry has yet to be realized. We contend that fundamental research and the quest for synergy are essential in this field. One approach to enhancing the efficiency of TiO2 is deposition onto porous inert substrates. In this work, we introduce a novel approach by applying TiO2 onto the surfaces of porous nanosized Al2O3 and ZrO2. Employing two soft chemistry methods — the glycol-citrate route for creating a porous and inert substrate and the peroxide route for depositing a TiO2 layer — we have created a technology that allows us to vary the TiO2 concentration on the inert matrix. The developed composite photocatalysts demonstrate competitive efficacy in disintegrating the model dye methylene blue. The most effective photocatalyst was Al2O3@TiO2 (0.26 wt.%) at 1200 °C. This material degrades approximately 98.2% of the methylene blue in 5 h, while nanosized TiO2 degrades only 33.5% of the dye under the same conditions. The photocatalytic activity of the material is affected by the concentration of TiO2 in the material due to the dilution of the peroxide solution. Notably, a decrease in the TiO2 concentration enhances the photocatalytic activity of the composite. We assumed that titanium dioxide was distributed in thinner layers at lower concentrations, which increased the area of effective contact and photocatalytic activity. The most efficient aluminum and zirconium oxides decorated with titanium dioxide had surface areas of 12.7 and 16.9 m2/g, respectively, while Al2O3 and ZrO2 had surface areas of 31.7 and 34.3 m2/g, respectively. Therefore, the decrease in methylene blue concentration was caused by photocatalysis but not by the sorption mechanism. The decomposition of methylene blue in all the samples is consistent with a pseudo-second-order photocatalysis model. The findings of this work lie in the precise application of TiO2 onto the surfaces of inert matrices, which is valuable for developing photocatalytic materials.

Graphical Abstract

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过在 Al2O3 和 ZrO2 纳米片上过氧化物溶胶-凝胶沉积 TiO2 来制造复合光催化剂的新方法
光催化剂是去除环境中有机染料的有前途的材料。二氧化钛是研究最为广泛的光催化剂之一,但其在光催化工业中的应用尚未实现。我们认为,在这一领域,基础研究和寻求协同作用至关重要。提高二氧化钛效率的一种方法是在多孔惰性基底上沉积。在这项工作中,我们引入了一种新方法,将二氧化钛应用于多孔纳米 Al2O3 和 ZrO2 的表面。我们采用了两种软化学方法--柠檬酸乙二醇法制造多孔惰性基底和过氧化物法沉积 TiO2 层--创造了一种技术,使我们能够改变惰性基底上的 TiO2 浓度。所开发的复合光催化剂在分解模型染料亚甲基蓝方面表现出极具竞争力的功效。最有效的光催化剂是 1200 °C 下的 Al2O3@TiO2(0.26 wt.%)。这种材料能在 5 小时内降解约 98.2% 的亚甲基蓝,而纳米级 TiO2 在相同条件下只能降解 33.5% 的染料。由于过氧化物溶液的稀释作用,该材料的光催化活性受到材料中 TiO2 浓度的影响。值得注意的是,二氧化钛浓度的降低会增强复合材料的光催化活性。我们假设二氧化钛在浓度较低时分布在较薄的层中,从而增加了有效接触面积和光催化活性。用二氧化钛装饰的最有效的铝氧化物和锆氧化物的表面积分别为 12.7 和 16.9 平方米/克,而 Al2O3 和 ZrO2 的表面积分别为 31.7 和 34.3 平方米/克。因此,亚甲基蓝浓度的降低是由光催化而非吸附机制引起的。所有样品中亚甲蓝的分解都符合伪二阶光催化模型。这项工作的发现在于将二氧化钛精确地应用于惰性基质表面,这对开发光催化材料很有价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Brazilian Journal of Chemical Engineering
Brazilian Journal of Chemical Engineering 工程技术-工程:化工
CiteScore
2.50
自引率
0.00%
发文量
84
审稿时长
6.8 months
期刊介绍: The Brazilian Journal of Chemical Engineering is a quarterly publication of the Associação Brasileira de Engenharia Química (Brazilian Society of Chemical Engineering - ABEQ) aiming at publishing papers reporting on basic and applied research and innovation in the field of chemical engineering and related areas.
期刊最新文献
C4 hydrocarbons to value-added chemicals over Keggin-type heteropolyacids: structure-properties, reaction parameters, and mechanisms Utilization of blue light-emitting diodes in Ensifer meliloti cultivation for enhanced production of antioxidant biopolymers Correlation of the solubility of isoniazid in some aqueous cosolvent mixtures using different mathematical models Doehlert matrix-based optimization of degradation of Rhodamine B in a swirling flow photolytic reactor operated in recirculation mode Application of DieselB10 formulations with short-chain alcohols in diesel cycle engines: phase equilibrium, physicochemical and thermodynamic properties and power curves
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1