Multi-Phase Trajectory Optimization for Alpine Skiers Using an Improved Retractable Body Model

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-04-20 DOI:10.1007/s10957-024-02422-5
Congying Cai, Xiaolan Yao
{"title":"Multi-Phase Trajectory Optimization for Alpine Skiers Using an Improved Retractable Body Model","authors":"Congying Cai, Xiaolan Yao","doi":"10.1007/s10957-024-02422-5","DOIUrl":null,"url":null,"abstract":"<p>In this paper, an improved retractable body model (IRBM) is established, which has an advantage in simulating the flexion-and-extension motion of skier’s legs during carved turning and straight gliding. The trajectory optimization problem for the nonlinear alpine skiing system is transformed into a multi-phase optimal control (MPOC) problem. Subsequently, a constrained multi-phase trajectory optimization model is developed based on the optimal control theory, where the optimization target is to minimize the total skiing time. The optimization model is discretized by using the Radau pseudospectral method (RPM), which transcribes the MPOC problem into a nonlinear programming (NLP) problem that is then solved by SNOPT solver. Through numerical simulations, the optimization results under different constraints are obtained using MATLAB. The variation characteristics of the variables and trajectories are analyzed, and four influencing factors related to the skiing time are investigated by comparative experiments. It turns out that the small turning radius can reduce the total skiing time, the flexion-and-extension motion of legs is beneficial to skier’s performance, and the large inclination angle can shorten skier’s turning time, while the control force has a slight effect on the skiing time. The effectiveness and feasibility of the proposed models and trajectory optimization strategies are validated by simulation and experiment results.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10957-024-02422-5","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, an improved retractable body model (IRBM) is established, which has an advantage in simulating the flexion-and-extension motion of skier’s legs during carved turning and straight gliding. The trajectory optimization problem for the nonlinear alpine skiing system is transformed into a multi-phase optimal control (MPOC) problem. Subsequently, a constrained multi-phase trajectory optimization model is developed based on the optimal control theory, where the optimization target is to minimize the total skiing time. The optimization model is discretized by using the Radau pseudospectral method (RPM), which transcribes the MPOC problem into a nonlinear programming (NLP) problem that is then solved by SNOPT solver. Through numerical simulations, the optimization results under different constraints are obtained using MATLAB. The variation characteristics of the variables and trajectories are analyzed, and four influencing factors related to the skiing time are investigated by comparative experiments. It turns out that the small turning radius can reduce the total skiing time, the flexion-and-extension motion of legs is beneficial to skier’s performance, and the large inclination angle can shorten skier’s turning time, while the control force has a slight effect on the skiing time. The effectiveness and feasibility of the proposed models and trajectory optimization strategies are validated by simulation and experiment results.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用改进的可伸缩身体模型优化高山滑雪运动员的多阶段轨迹
本文建立了一种改进的可伸缩身体模型(IRBM),该模型在模拟滑雪者腿部在雕刻转弯和直线滑行时的屈伸运动方面具有优势。非线性高山滑雪系统的轨迹优化问题被转化为多阶段最优控制(MPOC)问题。随后,基于最优控制理论建立了一个受约束的多阶段轨迹优化模型,优化目标是最小化总滑雪时间。通过使用 Radau 伪谱法(RPM)对优化模型进行离散化,将 MPOC 问题转化为非线性编程(NLP)问题,然后使用 SNOPT 求解器进行求解。通过数值模拟,利用 MATLAB 获得了不同约束条件下的优化结果。分析了变量和轨迹的变化特征,并通过对比实验研究了与滑雪时间相关的四个影响因素。结果表明,转弯半径小可以缩短总滑雪时间,腿部的屈伸运动有利于提高滑雪者的成绩,倾角大可以缩短滑雪者的转弯时间,而控制力对滑雪时间的影响较小。模拟和实验结果验证了所提模型和轨迹优化策略的有效性和可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1