A Study of the Effect of Magnetic Scattering on the Analysis of the Nanostructure of Oxide Dispersion-Strengthened Steels by Small-Angle Neutron Scattering

IF 1.1 4区 材料科学 Q3 METALLURGY & METALLURGICAL ENGINEERING Physics of Metals and Metallography Pub Date : 2024-04-21 DOI:10.1134/s0031918x23602718
S. V. Rogozhkin, A. V. Klauz, Yu. E. Gorshkova, G. D. Bokuchava, A. A. Khomich, A. A. Bogachev, A. A. Nikitin, L. Almásy, G. P. Kopitsa
{"title":"A Study of the Effect of Magnetic Scattering on the Analysis of the Nanostructure of Oxide Dispersion-Strengthened Steels by Small-Angle Neutron Scattering","authors":"S. V. Rogozhkin, A. V. Klauz, Yu. E. Gorshkova, G. D. Bokuchava, A. A. Khomich, A. A. Bogachev, A. A. Nikitin, L. Almásy, G. P. Kopitsa","doi":"10.1134/s0031918x23602718","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>A distinctive feature of oxide dispersion-strengthened alloys and steels, which provides a significant increase in heat resistance in comparison with traditional materials, is a significant number of homogeneously distributed nanoscale inclusions (oxides and clusters). For detailed characterization of such materials, a set of techniques is used, such as transmission electron microscopy, atom probe tomography, as well as small-angle scattering of X-rays and neutrons. The latter techniques make it possible to analyze the largest volume of material, while maintaining the ability to detect various nanoscale features. Since ferritic-martensitic oxide dispersion-strengthened steels are ferromagnetic materials, magnetic scattering has to be taken into account in the processing of small-angle neutron scattering data. The nanostructure of ferritic-martensitic oxide dispersion-strengthened steels with different alloying systems (different content of Cr, V, W, Al, and Zr) is investigated by small-angle neutron scattering. A comparison of the results of the study of the nanostructure of steels (oxide particles and clusters) in the ferromagnetic state with and without magnetic scattering is carried out. It is shown that oxide particles have a significantly higher magnetic contrast in comparison with nanoscale clusters. At the same time, the most accurate hardness values can be obtained by taking into consideration of both oxide inclusions and clusters.</p>","PeriodicalId":20180,"journal":{"name":"Physics of Metals and Metallography","volume":"38 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Metals and Metallography","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1134/s0031918x23602718","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

A distinctive feature of oxide dispersion-strengthened alloys and steels, which provides a significant increase in heat resistance in comparison with traditional materials, is a significant number of homogeneously distributed nanoscale inclusions (oxides and clusters). For detailed characterization of such materials, a set of techniques is used, such as transmission electron microscopy, atom probe tomography, as well as small-angle scattering of X-rays and neutrons. The latter techniques make it possible to analyze the largest volume of material, while maintaining the ability to detect various nanoscale features. Since ferritic-martensitic oxide dispersion-strengthened steels are ferromagnetic materials, magnetic scattering has to be taken into account in the processing of small-angle neutron scattering data. The nanostructure of ferritic-martensitic oxide dispersion-strengthened steels with different alloying systems (different content of Cr, V, W, Al, and Zr) is investigated by small-angle neutron scattering. A comparison of the results of the study of the nanostructure of steels (oxide particles and clusters) in the ferromagnetic state with and without magnetic scattering is carried out. It is shown that oxide particles have a significantly higher magnetic contrast in comparison with nanoscale clusters. At the same time, the most accurate hardness values can be obtained by taking into consideration of both oxide inclusions and clusters.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
磁散射对利用小角中子散射分析氧化物分散强化钢纳米结构的影响研究
摘要 与传统材料相比,氧化物分散强化合金和钢的一个显著特点是具有大量均匀分布的纳米级夹杂物(氧化物和团簇),从而显著提高了耐热性。为了详细描述这类材料的特性,使用了一系列技术,如透射电子显微镜、原子探针断层扫描以及 X 射线和中子的小角散射。后一种技术可以分析最大体积的材料,同时保持检测各种纳米级特征的能力。由于铁素体-马氏体氧化物弥散强化钢是铁磁性材料,因此在处理小角中子散射数据时必须考虑磁散射。小角中子散射研究了不同合金体系(不同含量的 Cr、V、W、Al 和 Zr)的铁素体-马氏体氧化物弥散强化钢的纳米结构。对铁磁状态下钢的纳米结构(氧化物颗粒和团块)的研究结果进行了有磁散射和无磁散射的比较。结果表明,氧化物颗粒的磁对比度明显高于纳米级簇。同时,考虑到氧化物夹杂物和氧化物簇,可以获得最准确的硬度值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physics of Metals and Metallography
Physics of Metals and Metallography 工程技术-冶金工程
CiteScore
2.00
自引率
25.00%
发文量
108
审稿时长
3 months
期刊介绍: The Physics of Metals and Metallography (Fizika metallov i metallovedenie) was founded in 1955 by the USSR Academy of Sciences. Its scientific profile involves the theory of metals and metal alloys, their electrical and magnetic properties, as well as their structure, phase transformations, and principal mechanical properties. The journal also publishes scientific reviews and papers written by experts involved in fundamental, application, and technological studies. The annual volume of publications amounts to some 250 papers submitted from 100 leading national scientific institutions.
期刊最新文献
Effect of Thermal-Kinetic Conditions of Austenite Transformation on the Structural-Phase State of Low-Carbon Steel Sheets Influence of Magnetic Field on Phase Transitions in the Antiferromagnetic Potts Model Electro-Optic Effect in Hexagonal Compounds RFeO3 On the Effect of Heating of Two-Phase Alloyed Brasses on Morphological Peculiarities of Intermetallic Inclusions Structural–Phase Transformations and Crystallographic Texture in Commercial Ti–6Al–4V Alloy with Globular Morphology of α-Phase Grains: The Rolling Plane
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1