DFT insights into doping and oxygen vacancy effects on CO and CO₂ adsorptions over CuAl2O4 spinel surfaces

IF 6.5 1区 化学 Q2 CHEMISTRY, PHYSICAL Journal of Catalysis Pub Date : 2024-04-16 DOI:10.1016/j.jcat.2024.115502
Rundong Wu , Li Li , Zhanghui Lu , Chunyan Sun , Lihong Cheng , Runping Ye , Rongbin Zhang , Qiang Li , Gang Feng
{"title":"DFT insights into doping and oxygen vacancy effects on CO and CO₂ adsorptions over CuAl2O4 spinel surfaces","authors":"Rundong Wu ,&nbsp;Li Li ,&nbsp;Zhanghui Lu ,&nbsp;Chunyan Sun ,&nbsp;Lihong Cheng ,&nbsp;Runping Ye ,&nbsp;Rongbin Zhang ,&nbsp;Qiang Li ,&nbsp;Gang Feng","doi":"10.1016/j.jcat.2024.115502","DOIUrl":null,"url":null,"abstract":"<div><p>Introducing transition metals into CuAl<sub>2</sub>O<sub>4</sub> spinel enhances catalyst stability and Cu sintering resistance in methanol steam reforming. Yet, the influence of doping on vacancy formation and the adsorption behaviors of CO<sub>2</sub> (the primary product) and CO (the notorious byproduct) remains unclear. Herein, we employed DFT + U to investigate CO and CO<sub>2</sub> adsorption on perfect, M-doped (Fe, Co, and Ni), and M-doped oxygen-deficient CuAl<sub>2</sub>O<sub>4</sub> spinel (1<!--> <!-->0<!--> <!-->0) and (1<!--> <!-->1<!--> <!-->0) surfaces. We find that stronger CO adsorption on (1<!--> <!-->0<!--> <!-->0) than (1<!--> <!-->1<!--> <!-->0) surfaces across all M-doped surfaces, while CO<sub>2</sub> adsorbs more stronger on (1<!--> <!-->1<!--> <!-->0) surfaces. The weakened CO adsorptions are observed on Fe and Ni-doped surfaces, demonstrating that doping plays a significant role in improving the resistance to CO poisoning. Co-doping promotes CO adsorption via a CO<sub>3</sub>-like structure on CuAl<sub>2</sub>O<sub>4</sub>(1<!--> <!-->1<!--> <!-->0) surface and boosts the CO oxidation. Furthermore, infrared spectroscopy simulation indicates that the vibrational frequencies for CO linear adsorption, formation of bent CO<sub>2</sub>- and CO<sub>3</sub>-like structures are within the ranges of 2042–2078, 1463–1566, and 1497–1816 cm<sup>−1</sup>, respectively. In addition, Ov on Ni-doped surfaces can significantly strengthen the CO<sub>2</sub> adsorption by 0.6–1.3 eV, highlighting the doping and oxygen-defect engineering in enhancing the CO<sub>2</sub> capture. This research uncovers the critical impact of metal doping and oxygen vacancies on CO and CO<sub>2</sub> adsorptions over CuAl<sub>2</sub>O<sub>4</sub> spinel catalyst, providing insights for developing catalysts with improved resistance to CO poisoning and enhanced CO oxidation which is vital for methanol steam reforming.</p></div>","PeriodicalId":346,"journal":{"name":"Journal of Catalysis","volume":null,"pages":null},"PeriodicalIF":6.5000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002195172400215X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Introducing transition metals into CuAl2O4 spinel enhances catalyst stability and Cu sintering resistance in methanol steam reforming. Yet, the influence of doping on vacancy formation and the adsorption behaviors of CO2 (the primary product) and CO (the notorious byproduct) remains unclear. Herein, we employed DFT + U to investigate CO and CO2 adsorption on perfect, M-doped (Fe, Co, and Ni), and M-doped oxygen-deficient CuAl2O4 spinel (1 0 0) and (1 1 0) surfaces. We find that stronger CO adsorption on (1 0 0) than (1 1 0) surfaces across all M-doped surfaces, while CO2 adsorbs more stronger on (1 1 0) surfaces. The weakened CO adsorptions are observed on Fe and Ni-doped surfaces, demonstrating that doping plays a significant role in improving the resistance to CO poisoning. Co-doping promotes CO adsorption via a CO3-like structure on CuAl2O4(1 1 0) surface and boosts the CO oxidation. Furthermore, infrared spectroscopy simulation indicates that the vibrational frequencies for CO linear adsorption, formation of bent CO2- and CO3-like structures are within the ranges of 2042–2078, 1463–1566, and 1497–1816 cm−1, respectively. In addition, Ov on Ni-doped surfaces can significantly strengthen the CO2 adsorption by 0.6–1.3 eV, highlighting the doping and oxygen-defect engineering in enhancing the CO2 capture. This research uncovers the critical impact of metal doping and oxygen vacancies on CO and CO2 adsorptions over CuAl2O4 spinel catalyst, providing insights for developing catalysts with improved resistance to CO poisoning and enhanced CO oxidation which is vital for methanol steam reforming.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DFT 对 CuAl2O4 尖晶石表面 CO 和 CO₂ 吸附的掺杂和氧空位效应的深入研究
在 CuAl2O4 尖晶石中引入过渡金属可提高甲醇蒸汽转化过程中催化剂的稳定性和 Cu 的抗烧结性。然而,掺杂对空位形成以及 CO2(主要产物)和 CO(臭名昭著的副产物)吸附行为的影响仍不清楚。在此,我们采用 DFT + U 研究了完美、掺杂 M(铁、钴和镍)和掺杂 M 的缺氧 CuAl2O4 尖晶石 (1 0 0) 和 (1 1 0) 表面对 CO 和 CO2 的吸附。我们发现,在所有掺杂 M 的表面中,(1 0 0) 比 (1 1 0) 表面对 CO 的吸附更强,而 (1 1 0) 表面对 CO2 的吸附更强。在掺铁和掺镍的表面上,CO 的吸附能力减弱,这表明掺杂在提高抗 CO 中毒能力方面发挥了重要作用。在 CuAl2O4(1 1 0)表面,掺杂 Co 可通过类似 CO3 的结构促进 CO 的吸附,并增强 CO 的氧化作用。此外,红外光谱模拟表明,CO 线性吸附、形成弯曲的 CO2- 和类 CO3 结构的振动频率分别在 2042-2078、1463-1566 和 1497-1816 cm-1 范围内。此外,掺杂镍表面上的 Ov 能显著增强二氧化碳的吸附能力 0.6-1.3 eV,凸显了掺杂和氧缺陷工程在增强二氧化碳捕获方面的作用。这项研究揭示了金属掺杂和氧空位对 CuAl2O4 尖晶石催化剂吸附 CO 和 CO2 的关键影响,为开发抗 CO 中毒能力更强、CO 氧化能力更强的催化剂提供了启示,这对甲醇蒸汽转化至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Catalysis
Journal of Catalysis 工程技术-工程:化工
CiteScore
12.30
自引率
5.50%
发文量
447
审稿时长
31 days
期刊介绍: The Journal of Catalysis publishes scholarly articles on both heterogeneous and homogeneous catalysis, covering a wide range of chemical transformations. These include various types of catalysis, such as those mediated by photons, plasmons, and electrons. The focus of the studies is to understand the relationship between catalytic function and the underlying chemical properties of surfaces and metal complexes. The articles in the journal offer innovative concepts and explore the synthesis and kinetics of inorganic solids and homogeneous complexes. Furthermore, they discuss spectroscopic techniques for characterizing catalysts, investigate the interaction of probes and reacting species with catalysts, and employ theoretical methods. The research presented in the journal should have direct relevance to the field of catalytic processes, addressing either fundamental aspects or applications of catalysis.
期刊最新文献
Study on the micro-mechanism for the thermal stability of α-diimine nickel catalysts and active centers Confining polyoxometalates in porphyrin-based porous cationic polymer toward boosting visible-light-driven synthesis of sulfoxides and detoxification of mustard gas simulants Defect tailoring in K-doped carbon nitride: Enabling efficient decoupling of light and dark reactions for timely and delayed on-demand solar hydrogen production A novel and facile ultraviolet-induced photo-reduction for preparing oxidase-like AuNCs@H2N-ZIF-8 composites in alcohol-water solutions Construct novel day-night dual reaction centers WO3-FePc photocatalyst for multipollutant degradation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1