{"title":"Numerical modeling of senile plaque development under conditions of limited diffusivity of amyloid-β monomers","authors":"Andrey V. Kuznetsov","doi":"10.1016/j.jtbi.2024.111823","DOIUrl":null,"url":null,"abstract":"<div><p>This paper introduces a new model to simulate the progression of senile plaques, focusing on scenarios where concentrations of amyloid beta (Aβ) monomers and aggregates vary between neurons. Extracellular variations in these concentrations may arise due to limited diffusivity of Aβ monomers and a high rate of Aβ monomer production at lipid membranes, requiring a substantial concentration gradient for diffusion-driven transport of Aβ monomers. The dimensionless formulation of the model is presented, which identifies four key dimensionless parameters governing the solutions for Aβ monomer and aggregate concentrations, as well as the radius of a growing Aβ plaque within the control volume. These parameters include the dimensionless diffusivity of Aβ monomers, the dimensionless rate of Aβ monomer production, and the dimensionless half-lives of Aβ monomers and aggregates. A dimensionless parameter is then introduced to evaluate the validity of the lumped capacitance approximation. An approximate solution is derived for the scenario involving large diffusivity of Aβ monomers and dysfunctional protein degradation machinery, resulting in infinitely long half-lives for Aβ monomers and aggregates. In this scenario, the concentrations of Aβ aggregates and the radius of the Aβ plaque depend solely on a single dimensionless parameter that characterizes the rate of Aβ monomer production. According to the approximate solution, the concentration of Aβ aggregates is linearly dependent on the rate of monomer production, and the radius of an Aβ plaque is directly proportional to the cube root of the rate of monomer production. However, when departing from the conditions of the approximate solution (e.g., finite half-lives), the concentrations of Aβ monomers and aggregates, along with the plaque radius, exhibit complex dependencies on all four dimensionless parameters. For instance, under physiological half-life conditions, the plaque radius reaches a maximum value and stabilizes thereafter.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022519324001048","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper introduces a new model to simulate the progression of senile plaques, focusing on scenarios where concentrations of amyloid beta (Aβ) monomers and aggregates vary between neurons. Extracellular variations in these concentrations may arise due to limited diffusivity of Aβ monomers and a high rate of Aβ monomer production at lipid membranes, requiring a substantial concentration gradient for diffusion-driven transport of Aβ monomers. The dimensionless formulation of the model is presented, which identifies four key dimensionless parameters governing the solutions for Aβ monomer and aggregate concentrations, as well as the radius of a growing Aβ plaque within the control volume. These parameters include the dimensionless diffusivity of Aβ monomers, the dimensionless rate of Aβ monomer production, and the dimensionless half-lives of Aβ monomers and aggregates. A dimensionless parameter is then introduced to evaluate the validity of the lumped capacitance approximation. An approximate solution is derived for the scenario involving large diffusivity of Aβ monomers and dysfunctional protein degradation machinery, resulting in infinitely long half-lives for Aβ monomers and aggregates. In this scenario, the concentrations of Aβ aggregates and the radius of the Aβ plaque depend solely on a single dimensionless parameter that characterizes the rate of Aβ monomer production. According to the approximate solution, the concentration of Aβ aggregates is linearly dependent on the rate of monomer production, and the radius of an Aβ plaque is directly proportional to the cube root of the rate of monomer production. However, when departing from the conditions of the approximate solution (e.g., finite half-lives), the concentrations of Aβ monomers and aggregates, along with the plaque radius, exhibit complex dependencies on all four dimensionless parameters. For instance, under physiological half-life conditions, the plaque radius reaches a maximum value and stabilizes thereafter.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.