{"title":"Effect of Freeze-Dried Chitosan/Dicyandiamide on the Structure and Photocatalytic Performance of C-CS/g-C3N4","authors":"Qingbo Yu, Zishe Xu, Dapeng Zhou, Xinxin Ren, Xianhua Li, Fengtao Lin, Qingping Wang","doi":"10.1134/s0018143924020085","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Chitosan (CS) was selected as the carbon source, and the Chitosan/dicyandiamide (CS/DCDA) precursors with hydrogen bonding interactions were prepared by freeze-drying and normal drying, and the carbon-Chitosan/graphite carbon nitride (C-CS/g-C<sub>3</sub>N<sub>4</sub>) composites were obtained after calcination. The results show that the freeze-drying process can produce more hydrogen bonding interaction between chitosan and dicyandiamide (DCDA) and more pores through recrystallization. More composite carbon is formed in the C-CS/g-C<sub>3</sub>N<sub>4</sub>-2 composite obtained after calcination. More hydrogen bonds are broken, releasing more N lone pairs of electrons, which not only facilitates the <i>n</i>−π* electron leap, but also facilitates the separation and photogenerated electron-hole, and provides a large number of reactive sites for photocatalytic degradation of pollutants. This results in better photocatalytic performance of C-CS/g-C<sub>3</sub>N<sub>4</sub>-2.</p>","PeriodicalId":12893,"journal":{"name":"High Energy Chemistry","volume":"38 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1134/s0018143924020085","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Chitosan (CS) was selected as the carbon source, and the Chitosan/dicyandiamide (CS/DCDA) precursors with hydrogen bonding interactions were prepared by freeze-drying and normal drying, and the carbon-Chitosan/graphite carbon nitride (C-CS/g-C3N4) composites were obtained after calcination. The results show that the freeze-drying process can produce more hydrogen bonding interaction between chitosan and dicyandiamide (DCDA) and more pores through recrystallization. More composite carbon is formed in the C-CS/g-C3N4-2 composite obtained after calcination. More hydrogen bonds are broken, releasing more N lone pairs of electrons, which not only facilitates the n−π* electron leap, but also facilitates the separation and photogenerated electron-hole, and provides a large number of reactive sites for photocatalytic degradation of pollutants. This results in better photocatalytic performance of C-CS/g-C3N4-2.
期刊介绍:
High Energy Chemistry publishes original articles, reviews, and short communications on molecular and supramolecular photochemistry, photobiology, radiation chemistry, plasma chemistry, chemistry of nanosized systems, chemistry of new atoms, processes and materials for optical information systems and other areas of high energy chemistry. It publishes theoretical and experimental studies in all areas of high energy chemistry, such as the interaction of high-energy particles with matter, the nature and reactivity of short-lived species induced by the action of particle and electromagnetic radiation or hot atoms on substances in their gaseous and condensed states, and chemical processes initiated in organic and inorganic systems by high-energy radiation.