Effect of Freeze-Dried Chitosan/Dicyandiamide on the Structure and Photocatalytic Performance of C-CS/g-C3N4

IF 0.9 4区 化学 Q4 CHEMISTRY, PHYSICAL High Energy Chemistry Pub Date : 2024-04-21 DOI:10.1134/s0018143924020085
Qingbo Yu, Zishe Xu, Dapeng Zhou, Xinxin Ren, Xianhua Li, Fengtao Lin, Qingping Wang
{"title":"Effect of Freeze-Dried Chitosan/Dicyandiamide on the Structure and Photocatalytic Performance of C-CS/g-C3N4","authors":"Qingbo Yu, Zishe Xu, Dapeng Zhou, Xinxin Ren, Xianhua Li, Fengtao Lin, Qingping Wang","doi":"10.1134/s0018143924020085","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Chitosan (CS) was selected as the carbon source, and the Chitosan/dicyandiamide (CS/DCDA) precursors with hydrogen bonding interactions were prepared by freeze-drying and normal drying, and the carbon-Chitosan/graphite carbon nitride (C-CS/g-C<sub>3</sub>N<sub>4</sub>) composites were obtained after calcination. The results show that the freeze-drying process can produce more hydrogen bonding interaction between chitosan and dicyandiamide (DCDA) and more pores through recrystallization. More composite carbon is formed in the C-CS/g-C<sub>3</sub>N<sub>4</sub>-2 composite obtained after calcination. More hydrogen bonds are broken, releasing more N lone pairs of electrons, which not only facilitates the <i>n</i>−π* electron leap, but also facilitates the separation and photogenerated electron-hole, and provides a large number of reactive sites for photocatalytic degradation of pollutants. This results in better photocatalytic performance of C-CS/g-C<sub>3</sub>N<sub>4</sub>-2.</p>","PeriodicalId":12893,"journal":{"name":"High Energy Chemistry","volume":"38 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1134/s0018143924020085","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Chitosan (CS) was selected as the carbon source, and the Chitosan/dicyandiamide (CS/DCDA) precursors with hydrogen bonding interactions were prepared by freeze-drying and normal drying, and the carbon-Chitosan/graphite carbon nitride (C-CS/g-C3N4) composites were obtained after calcination. The results show that the freeze-drying process can produce more hydrogen bonding interaction between chitosan and dicyandiamide (DCDA) and more pores through recrystallization. More composite carbon is formed in the C-CS/g-C3N4-2 composite obtained after calcination. More hydrogen bonds are broken, releasing more N lone pairs of electrons, which not only facilitates the n−π* electron leap, but also facilitates the separation and photogenerated electron-hole, and provides a large number of reactive sites for photocatalytic degradation of pollutants. This results in better photocatalytic performance of C-CS/g-C3N4-2.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
冻干壳聚糖/双氰胺对 C-CS/g-C3N4 结构和光催化性能的影响
摘要 选用壳聚糖(CS)作为碳源,通过冷冻干燥和普通干燥制备了具有氢键作用的壳聚糖/双氰胺(CS/DCDA)前驱体,经煅烧得到了碳-壳聚糖/石墨氮化碳(C-CS/g-C3N4)复合材料。结果表明,冷冻干燥过程能使壳聚糖和双氰胺(DCDA)之间产生更多的氢键作用,并通过再结晶产生更多的孔隙。煅烧后得到的 C-CS/g-C3N4-2 复合材料中形成了更多的复合碳。更多的氢键被打破,释放出更多的 N 孤对电子,不仅有利于 n-π* 电子的跃迁,也有利于电子-空穴的分离和光生,为污染物的光催化降解提供了大量的反应位点。因此,C-CS/g-C3N4-2 具有更好的光催化性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
High Energy Chemistry
High Energy Chemistry 化学-物理化学
CiteScore
1.50
自引率
28.60%
发文量
62
审稿时长
6-12 weeks
期刊介绍: High Energy Chemistry publishes original articles, reviews, and short communications on molecular and supramolecular photochemistry, photobiology, radiation chemistry, plasma chemistry, chemistry of nanosized systems, chemistry of new atoms, processes and materials for optical information systems and other areas of high energy chemistry. It publishes theoretical and experimental studies in all areas of high energy chemistry, such as the interaction of high-energy particles with matter, the nature and reactivity of short-lived species induced by the action of particle and electromagnetic radiation or hot atoms on substances in their gaseous and condensed states, and chemical processes initiated in organic and inorganic systems by high-energy radiation.
期刊最新文献
Colloidal Quantum Dots: 3. Molecular Dynamics Simulation of Quantum Dot Structure Colloidal Quantum Dots: 1. Colloidal Quantum Dots, a New Class of Luminophores Colloidal Quantum Dots: 4. Colloidal Quantum Dots and Basic Photoluminescence Laws Colloidal Quantum Dots: 2. Methods for the Synthesis of Colloidal Quantum Dots Colloidal Quantum Dots: 5. Luminescence Features of Colloidal Quantum Dots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1