Duygu Ataman, Canan Onac, Ahmet Kaya, Hamza Korkmaz Alpoguz
{"title":"Removal of Simazine from Aqueous Environment through Polymeric Membrane System","authors":"Duygu Ataman, Canan Onac, Ahmet Kaya, Hamza Korkmaz Alpoguz","doi":"10.3103/S1063455X24020036","DOIUrl":null,"url":null,"abstract":"<p>In this study, the kinetic transport of the simazine herbicide, which creates a serious threat to human health, was realized based on the diffusion via polymer inclusion membrane. In the polymer inclusion membrane synthesis, Aliquat 336 was used as a synthetic carrier and 2-nitrophenyl octyl ether was used as a plasticizer. The effect of the carrier concentration, the effect of the donor phase acid on the transport efficiency and the effect of the acceptor phase type change on the parameters of transport efficiency were studied. 62.56% of simazine was removed from donor phase at the end of 48 h in the optimum experimental conditions and permeability; flux values were calculated to be 3.056 × 10<sup>–7</sup> m/s and 1.515 × 10<sup>–7</sup> mol/m<sup>2</sup>s, respectively. As the last step, the surface characterizations of the polymer inclusion membranes were clarified using the method of field emission scanning electron microscopy. This study demonstrated economically and environmentally sustainable processes for the removal of micropollutants such as simazine.</p>","PeriodicalId":680,"journal":{"name":"Journal of Water Chemistry and Technology","volume":"46 2","pages":"186 - 194"},"PeriodicalIF":0.5000,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water Chemistry and Technology","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.3103/S1063455X24020036","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, the kinetic transport of the simazine herbicide, which creates a serious threat to human health, was realized based on the diffusion via polymer inclusion membrane. In the polymer inclusion membrane synthesis, Aliquat 336 was used as a synthetic carrier and 2-nitrophenyl octyl ether was used as a plasticizer. The effect of the carrier concentration, the effect of the donor phase acid on the transport efficiency and the effect of the acceptor phase type change on the parameters of transport efficiency were studied. 62.56% of simazine was removed from donor phase at the end of 48 h in the optimum experimental conditions and permeability; flux values were calculated to be 3.056 × 10–7 m/s and 1.515 × 10–7 mol/m2s, respectively. As the last step, the surface characterizations of the polymer inclusion membranes were clarified using the method of field emission scanning electron microscopy. This study demonstrated economically and environmentally sustainable processes for the removal of micropollutants such as simazine.
期刊介绍:
Journal of Water Chemistry and Technology focuses on water and wastewater treatment, water pollution monitoring, water purification, and similar topics. The journal publishes original scientific theoretical and experimental articles in the following sections: new developments in the science of water; theoretical principles of water treatment and technology; physical chemistry of water treatment processes; analytical water chemistry; analysis of natural and waste waters; water treatment technology and demineralization of water; biological methods of water treatment; and also solicited critical reviews summarizing the latest findings. The journal welcomes manuscripts from all countries in the English or Ukrainian language. All manuscripts are peer-reviewed.