Mechanical Properties of Concentric Three-Phase HTS Cable Based on Laminated Theory

IF 1.6 4区 物理与天体物理 Q3 PHYSICS, APPLIED Journal of Superconductivity and Novel Magnetism Pub Date : 2024-04-23 DOI:10.1007/s10948-024-06735-4
Bin Feng, Kaizhong Ding, Jiahui Zhu
{"title":"Mechanical Properties of Concentric Three-Phase HTS Cable Based on Laminated Theory","authors":"Bin Feng,&nbsp;Kaizhong Ding,&nbsp;Jiahui Zhu","doi":"10.1007/s10948-024-06735-4","DOIUrl":null,"url":null,"abstract":"<div><p>High-temperature superconducting (HTS) cable, with massive current carrying capability and low electric power loss, is always at the cutting edge of the strong electric fields. The concentric three-phase HTS cable usually subjects to the impact of electromagnetic and mechanical forces. The forces will lead to the shape change of the cable, which may damage the cable and cause the degeneration of the critical current (<i>I</i>c). In this paper, an analysis model of stress-strain and bending properties of the 10 kV/1 KA cable based on laminated theory is built. Laminated beam theory can simplify REBCO superconducting tape and concentric three-phase HTS cable to analyze stress-strain distribution. A finite element method (FEM) simulation model is established to analyze the critical bending radius of the HTS cable. Meanwhile, the normalized of the critical current of the cable is obtained at different bending radii. The analysis results will provide the theoretical basis for cable pipelaying and line relay protection in grid.</p></div>","PeriodicalId":669,"journal":{"name":"Journal of Superconductivity and Novel Magnetism","volume":"37 5-7","pages":"943 - 953"},"PeriodicalIF":1.6000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Superconductivity and Novel Magnetism","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10948-024-06735-4","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

High-temperature superconducting (HTS) cable, with massive current carrying capability and low electric power loss, is always at the cutting edge of the strong electric fields. The concentric three-phase HTS cable usually subjects to the impact of electromagnetic and mechanical forces. The forces will lead to the shape change of the cable, which may damage the cable and cause the degeneration of the critical current (Ic). In this paper, an analysis model of stress-strain and bending properties of the 10 kV/1 KA cable based on laminated theory is built. Laminated beam theory can simplify REBCO superconducting tape and concentric three-phase HTS cable to analyze stress-strain distribution. A finite element method (FEM) simulation model is established to analyze the critical bending radius of the HTS cable. Meanwhile, the normalized of the critical current of the cable is obtained at different bending radii. The analysis results will provide the theoretical basis for cable pipelaying and line relay protection in grid.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于层状理论的同心三相 HTS 电缆的机械特性
高温超导(HTS)电缆具有承载电流大、电能损耗低的特点,始终处于强电场的最前沿。同心三相 HTS 电缆通常会受到电磁力和机械力的影响。这些力会导致电缆的形状发生变化,从而可能损坏电缆并导致临界电流(Ic)的衰减。本文基于层状理论建立了 10 kV/1 KA 电缆的应力应变和弯曲特性分析模型。层状梁理论可简化 REBCO 超导带和同心三相 HTS 电缆,以分析应力应变分布。建立了有限元法(FEM)仿真模型来分析 HTS 电缆的临界弯曲半径。同时,得到了不同弯曲半径下电缆临界电流的归一化值。分析结果将为电网中的电缆管道敷设和线路继电保护提供理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Superconductivity and Novel Magnetism
Journal of Superconductivity and Novel Magnetism 物理-物理:凝聚态物理
CiteScore
3.70
自引率
11.10%
发文量
342
审稿时长
3.5 months
期刊介绍: The Journal of Superconductivity and Novel Magnetism serves as the international forum for the most current research and ideas in these fields. This highly acclaimed journal publishes peer-reviewed original papers, conference proceedings and invited review articles that examine all aspects of the science and technology of superconductivity, including new materials, new mechanisms, basic and technological properties, new phenomena, and small- and large-scale applications. Novel magnetism, which is expanding rapidly, is also featured in the journal. The journal focuses on such areas as spintronics, magnetic semiconductors, properties of magnetic multilayers, magnetoresistive materials and structures, magnetic oxides, etc. Novel superconducting and magnetic materials are complex compounds, and the journal publishes articles related to all aspects their study, such as sample preparation, spectroscopy and transport properties as well as various applications.
期刊最新文献
Calorimetric Investigation of Magnetic Transitions in GdPdAl and TbPdAl Structural, Magnetocaloric Effect and Critical Phenomena Studies of La0.8Na0.2Mn0.94Bi0.06O3 Synthesized by Sol–gel Technique Field-Induced Multistate Magnetization Switching in Ferromagnetic Nanowire with Parallel Anti-dots for Memristor Applications Structural, Optoelectronic, Magnetic, and Thermoelectric Properties of Titanium Ruthenate Quadruple Perovskites: A First Principle Investigation Structural, Morphological, Electrical Resistivity, and Temperature-dependent Magnetic Property of Single-layered Amorphous Fe70Co15Zr7B5Cu3 HITPERM Films: The Effect of Thickness
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1