{"title":"Inhomogeneous log-Gaussian Cox processes with piecewise constant covariates: a case study in modeling of COVID-19 transmission risk in East Java","authors":"Alwan Fadlurohman, Achmad Choiruddin, Jorge Mateu","doi":"10.1007/s00477-024-02720-4","DOIUrl":null,"url":null,"abstract":"<p>The inhomogeneous Log-Gaussian Cox Process (LGCP) defines a flexible point process model for the analysis of spatial point patterns featuring inhomogeneity/spatial trend and aggregation patterns. To fit an LGCP model to spatial point pattern data and study the spatial trend, one could link the intensity function with continuous spatial covariates. Although non-continuous covariates are becoming more common in practice, the existing estimation methods so far only cover covariates in continuous form. As a consequence, to implement such methods, the non-continuous covariates are replaced by the continuous ones by applying some transformation techniques, which are many times problematic. In this paper, we develop a technique for inhomogeneous LGCP involving non-continuous covariates, termed piecewise constant covariates. The method does not require covariates transformation and likelihood approximation, resulting in an estimation technique equivalent to the one for generalized linear models. We apply our method for modeling COVID-19 transmission risk in East Java, Indonesia, which involves five piecewise constant covariates representing population density and sources of crowd. We outline that population density and industry density are significant covariates affecting the COVID-19 transmission risk in East Java.</p>","PeriodicalId":21987,"journal":{"name":"Stochastic Environmental Research and Risk Assessment","volume":"1 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Environmental Research and Risk Assessment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s00477-024-02720-4","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
The inhomogeneous Log-Gaussian Cox Process (LGCP) defines a flexible point process model for the analysis of spatial point patterns featuring inhomogeneity/spatial trend and aggregation patterns. To fit an LGCP model to spatial point pattern data and study the spatial trend, one could link the intensity function with continuous spatial covariates. Although non-continuous covariates are becoming more common in practice, the existing estimation methods so far only cover covariates in continuous form. As a consequence, to implement such methods, the non-continuous covariates are replaced by the continuous ones by applying some transformation techniques, which are many times problematic. In this paper, we develop a technique for inhomogeneous LGCP involving non-continuous covariates, termed piecewise constant covariates. The method does not require covariates transformation and likelihood approximation, resulting in an estimation technique equivalent to the one for generalized linear models. We apply our method for modeling COVID-19 transmission risk in East Java, Indonesia, which involves five piecewise constant covariates representing population density and sources of crowd. We outline that population density and industry density are significant covariates affecting the COVID-19 transmission risk in East Java.
期刊介绍:
Stochastic Environmental Research and Risk Assessment (SERRA) will publish research papers, reviews and technical notes on stochastic and probabilistic approaches to environmental sciences and engineering, including interactions of earth and atmospheric environments with people and ecosystems. The basic idea is to bring together research papers on stochastic modelling in various fields of environmental sciences and to provide an interdisciplinary forum for the exchange of ideas, for communicating on issues that cut across disciplinary barriers, and for the dissemination of stochastic techniques used in different fields to the community of interested researchers. Original contributions will be considered dealing with modelling (theoretical and computational), measurements and instrumentation in one or more of the following topical areas:
- Spatiotemporal analysis and mapping of natural processes.
- Enviroinformatics.
- Environmental risk assessment, reliability analysis and decision making.
- Surface and subsurface hydrology and hydraulics.
- Multiphase porous media domains and contaminant transport modelling.
- Hazardous waste site characterization.
- Stochastic turbulence and random hydrodynamic fields.
- Chaotic and fractal systems.
- Random waves and seafloor morphology.
- Stochastic atmospheric and climate processes.
- Air pollution and quality assessment research.
- Modern geostatistics.
- Mechanisms of pollutant formation, emission, exposure and absorption.
- Physical, chemical and biological analysis of human exposure from single and multiple media and routes; control and protection.
- Bioinformatics.
- Probabilistic methods in ecology and population biology.
- Epidemiological investigations.
- Models using stochastic differential equations stochastic or partial differential equations.
- Hazardous waste site characterization.