{"title":"Simple and rapid synthesis of zeolite W from K-feldspar via the improved hydrothermal method","authors":"Zixuan Zhao, Kai Yang, Yun Li, Jilin Cao","doi":"10.1002/apj.3078","DOIUrl":null,"url":null,"abstract":"<p>An improved hydrothermal method was proposed to rapidly synthesize zeolite W from alkali fusion-activated K-feldspar. The effects of <i>m</i> (KOH)/<i>m</i> (K-feldspar), <i>n</i> (SiO<sub>2</sub>)/<i>n</i> (Al<sub>2</sub>O<sub>3</sub>), <i>n</i> (H<sub>2</sub>O)/<i>n</i> (SiO<sub>2</sub>), crystallization time, and crystallization temperature on the synthesis of the zeolite W were investigated. The optimal synthesis conditions were <i>m</i> (KOH)/<i>m</i> (K-feldspar) ratio of 1.5:1, the activation time of 2 h, and the activation temperature of 500°C, <i>n</i> (H<sub>2</sub>O)/<i>n</i> (SiO<sub>2</sub>) ratios of 42, <i>n</i> (K<sub>2</sub>O)/<i>n</i> (SiO<sub>2</sub>) of 0.90, <i>n</i> (SiO<sub>2</sub>)/<i>n</i> (Al<sub>2</sub>O<sub>3</sub>) of 5, crystallization time of 6 h, and crystallization temperature of 150°C. The mechanism for rapid synthesis of zeolite W was illustrated. In this process, Na<sub>2</sub>SiO<sub>3</sub>·9H<sub>2</sub>O and Al<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>·18H<sub>2</sub>O were first dissolved rapidly in the synthesis system to form an amorphous gel, which contributes to the accelerated crystallization process. Compared with the state-of-the-art synthesis method, this method remarkably decreases the water content to be added in the synthesis process and crystallization time, avoids the pre-preparation process of the xerogel, and enhances the utilization rate of K-feldspar. This work provides an industrial-friendly synthesis process of zeolite W and could realize the highly efficient utilization of K-feldspar.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/apj.3078","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
An improved hydrothermal method was proposed to rapidly synthesize zeolite W from alkali fusion-activated K-feldspar. The effects of m (KOH)/m (K-feldspar), n (SiO2)/n (Al2O3), n (H2O)/n (SiO2), crystallization time, and crystallization temperature on the synthesis of the zeolite W were investigated. The optimal synthesis conditions were m (KOH)/m (K-feldspar) ratio of 1.5:1, the activation time of 2 h, and the activation temperature of 500°C, n (H2O)/n (SiO2) ratios of 42, n (K2O)/n (SiO2) of 0.90, n (SiO2)/n (Al2O3) of 5, crystallization time of 6 h, and crystallization temperature of 150°C. The mechanism for rapid synthesis of zeolite W was illustrated. In this process, Na2SiO3·9H2O and Al2(SO4)3·18H2O were first dissolved rapidly in the synthesis system to form an amorphous gel, which contributes to the accelerated crystallization process. Compared with the state-of-the-art synthesis method, this method remarkably decreases the water content to be added in the synthesis process and crystallization time, avoids the pre-preparation process of the xerogel, and enhances the utilization rate of K-feldspar. This work provides an industrial-friendly synthesis process of zeolite W and could realize the highly efficient utilization of K-feldspar.
提出了一种改进的水热法,可利用碱熔活化的 K 长石快速合成沸石 W。研究了m(KOH)/m(K-长石)、n(SiO2)/n(Al2O3)、n(H2O)/n(SiO2)、结晶时间和结晶温度对沸石W合成的影响。最佳合成条件为m(KOH)/m(K-长石)比为1.5:1,活化时间为2 h,活化温度为500℃,n(H2O)/n(SiO2)比为42,n(K2O)/n(SiO2)比为0.90,n(SiO2)/n(Al2O3)比为5,结晶时间为6 h,结晶温度为150℃。说明了快速合成沸石 W 的机理。在这一过程中,Na2SiO3-9H2O 和 Al2(SO4)3-18H2O 首先在合成体系中快速溶解,形成无定形凝胶,这有助于加速结晶过程。与最先进的合成方法相比,该方法大大减少了合成过程中的加水量和结晶时间,避免了异凝胶的预制备过程,提高了钾长石的利用率。这项工作提供了一种工业友好型沸石 W 合成工艺,可实现钾长石的高效利用。
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.