Active Gaze Labeling: Visualization for Trust Building

Maurice Koch;Nan Cao;Daniel Weiskopf;Kuno Kurzhals
{"title":"Active Gaze Labeling: Visualization for Trust Building","authors":"Maurice Koch;Nan Cao;Daniel Weiskopf;Kuno Kurzhals","doi":"10.1109/TVCG.2024.3392476","DOIUrl":null,"url":null,"abstract":"Areas of interest (AOIs) are well-established means of providing semantic information for visualizing, analyzing, and classifying gaze data. However, the usual manual annotation of AOIs is time-consuming and further impaired by ambiguities in label assignments. To address these issues, we present an interactive labeling approach that combines visualization, machine learning, and user-centered explainable annotation. Our system provides uncertainty-aware visualization to build trust in classification with an increasing number of annotated examples. It combines specifically designed EyeFlower glyphs, dimensionality reduction, and selection and exploration techniques in an integrated workflow. The approach is versatile and hardware-agnostic, supporting video stimuli from stationary and unconstrained mobile eye tracking alike. We conducted an expert review to assess labeling strategies and trust building.","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":"31 7","pages":"3942-3956"},"PeriodicalIF":6.5000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10506840","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on visualization and computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10506840/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Areas of interest (AOIs) are well-established means of providing semantic information for visualizing, analyzing, and classifying gaze data. However, the usual manual annotation of AOIs is time-consuming and further impaired by ambiguities in label assignments. To address these issues, we present an interactive labeling approach that combines visualization, machine learning, and user-centered explainable annotation. Our system provides uncertainty-aware visualization to build trust in classification with an increasing number of annotated examples. It combines specifically designed EyeFlower glyphs, dimensionality reduction, and selection and exploration techniques in an integrated workflow. The approach is versatile and hardware-agnostic, supporting video stimuli from stationary and unconstrained mobile eye tracking alike. We conducted an expert review to assess labeling strategies and trust building.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
主动注视标签:建立信任的可视化
感兴趣区域(aoi)是一种公认的为可视化、分析和分类注视数据提供语义信息的方法。然而,通常的人工标注aoi是耗时的,并且由于标签分配的模糊性而进一步受到损害。为了解决这些问题,我们提出了一种交互式标签方法,该方法结合了可视化、机器学习和以用户为中心的可解释注释。我们的系统提供了不确定性感知的可视化,通过越来越多的注释示例来建立分类的信任。它结合了专门设计的EyeFlower字形,降维,选择和探索技术在一个集成的工作流程。该方法是通用的和硬件无关的,支持来自静止和不受约束的移动眼动追踪的视频刺激。我们进行了专家审查,以评估标签策略和信任建立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Multimodal Framework for Understanding Collaborative Design Processes. DAVA: Decoding Art With Visual Analytics Through Feature Modeling and Multi-Agent Collaboration. ReVISit 2: A Full Experiment Life Cycle User Study Framework. Incorporating Drone into Mixed Reality for Enhanced Remote Collaboration: A User Study on Inspection Task. Parallel Clusters: Visual Comparison of Embeddings Based on Multi-Scale Neighborhood Analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1