Predicting September Arctic Sea Ice: A Multi-Model Seasonal Skill Comparison

IF 6.9 1区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Bulletin of the American Meteorological Society Pub Date : 2024-04-22 DOI:10.1175/bams-d-23-0163.1
Mitchell Bushuk, Sahara Ali, David A. Bailey, Qing Bao, Lauriane Batté, Uma S. Bhatt, Edward Blanchard-Wrigglesworth, Ed Blockley, Gavin Cawley, Junhwa Chi, François Counillon, Philippe Goulet Coulombe, Richard I. Cullather, Francis X. Diebold, Arlan Dirkson, Eleftheria Exarchou, Maximilian Göbel, William Gregory, Virginie Guemas, Lawrence Hamilton, Bian He, Sean Horvath, Monica Ionita, Jennifer E. Kay, Eliot Kim, Noriaki Kimura, Dmitri Kondrashov, Zachary M. Labe, WooSung Lee, Younjoo J. Lee, Cuihua Li, Xuewei Li, Yongcheng Lin, Yanyun Liu, Wieslaw Maslowski, François Massonnet, Walter N. Meier, William J. Merryfield, Hannah Myint, Juan C. Acosta Navarro, Alek Petty, Fangli Qiao, David Schröder, Axel Schweiger, Qi Shu, Michael Sigmond, Michael Steele, Julienne Stroeve, Nico Sun, Steffen Tietsche, Michel Tsamados, Keguang Wang, Jianwu Wang, Wanqiu Wang, Yiguo Wang, Yun Wang, James Williams, Qinghua Yang, Xiaojun Yuan, Jinlun Zhang, Yongfei Zhang
{"title":"Predicting September Arctic Sea Ice: A Multi-Model Seasonal Skill Comparison","authors":"Mitchell Bushuk, Sahara Ali, David A. Bailey, Qing Bao, Lauriane Batté, Uma S. Bhatt, Edward Blanchard-Wrigglesworth, Ed Blockley, Gavin Cawley, Junhwa Chi, François Counillon, Philippe Goulet Coulombe, Richard I. Cullather, Francis X. Diebold, Arlan Dirkson, Eleftheria Exarchou, Maximilian Göbel, William Gregory, Virginie Guemas, Lawrence Hamilton, Bian He, Sean Horvath, Monica Ionita, Jennifer E. Kay, Eliot Kim, Noriaki Kimura, Dmitri Kondrashov, Zachary M. Labe, WooSung Lee, Younjoo J. Lee, Cuihua Li, Xuewei Li, Yongcheng Lin, Yanyun Liu, Wieslaw Maslowski, François Massonnet, Walter N. Meier, William J. Merryfield, Hannah Myint, Juan C. Acosta Navarro, Alek Petty, Fangli Qiao, David Schröder, Axel Schweiger, Qi Shu, Michael Sigmond, Michael Steele, Julienne Stroeve, Nico Sun, Steffen Tietsche, Michel Tsamados, Keguang Wang, Jianwu Wang, Wanqiu Wang, Yiguo Wang, Yun Wang, James Williams, Qinghua Yang, Xiaojun Yuan, Jinlun Zhang, Yongfei Zhang","doi":"10.1175/bams-d-23-0163.1","DOIUrl":null,"url":null,"abstract":"Abstract This study quantifies the state-of-the-art in the rapidly growing field of seasonal Arctic sea ice prediction. A novel multi-model dataset of retrospective seasonal predictions of September Arctic sea ice is created and analyzed, consisting of community contributions from 17 statistical models and 17 dynamical models. Prediction skill is compared over the period 2001–2020 for predictions of Pan-Arctic sea ice extent (SIE), regional SIE, and local sea ice concentration (SIC) initialized on June 1, July 1, August 1, and September 1. This diverse set of statistical and dynamical models can individually predict linearly detrended Pan-Arctic SIE anomalies with skill, and a multi-model median prediction has correlation coefficients of 0.79, 0.86, 0.92, and 0.99 at these respective initialization times. Regional SIE predictions have similar skill to Pan-Arctic predictions in the Alaskan and Siberian regions, whereas regional skill is lower in the Canadian, Atlantic, and Central Arctic sectors. The skill of dynamical and statistical models is generally comparable for Pan-Arctic SIE, whereas dynamical models outperform their statistical counterparts for regional and local predictions. The prediction systems are found to provide the most value added relative to basic reference forecasts in the extreme SIE years of 1996, 2007, and 2012. SIE prediction errors do not show clear trends over time, suggesting that there has been minimal change in inherent sea ice predictability over the satellite era. Overall, this study demonstrates that there are bright prospects for skillful operational predictions of September sea ice at least three months in advance.","PeriodicalId":9464,"journal":{"name":"Bulletin of the American Meteorological Society","volume":"2 1","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the American Meteorological Society","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/bams-d-23-0163.1","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract This study quantifies the state-of-the-art in the rapidly growing field of seasonal Arctic sea ice prediction. A novel multi-model dataset of retrospective seasonal predictions of September Arctic sea ice is created and analyzed, consisting of community contributions from 17 statistical models and 17 dynamical models. Prediction skill is compared over the period 2001–2020 for predictions of Pan-Arctic sea ice extent (SIE), regional SIE, and local sea ice concentration (SIC) initialized on June 1, July 1, August 1, and September 1. This diverse set of statistical and dynamical models can individually predict linearly detrended Pan-Arctic SIE anomalies with skill, and a multi-model median prediction has correlation coefficients of 0.79, 0.86, 0.92, and 0.99 at these respective initialization times. Regional SIE predictions have similar skill to Pan-Arctic predictions in the Alaskan and Siberian regions, whereas regional skill is lower in the Canadian, Atlantic, and Central Arctic sectors. The skill of dynamical and statistical models is generally comparable for Pan-Arctic SIE, whereas dynamical models outperform their statistical counterparts for regional and local predictions. The prediction systems are found to provide the most value added relative to basic reference forecasts in the extreme SIE years of 1996, 2007, and 2012. SIE prediction errors do not show clear trends over time, suggesting that there has been minimal change in inherent sea ice predictability over the satellite era. Overall, this study demonstrates that there are bright prospects for skillful operational predictions of September sea ice at least three months in advance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预测九月北极海冰:多模型季节性技能比较
摘要 本研究对迅速发展的北极海冰季节性预测领域的最新技术进行了量化。建立并分析了一个新颖的多模式数据集,该数据集由 17 个统计模式和 17 个动力学模式的群体贡献组成,对北极 9 月海冰的季节性预测进行了回顾性分析。比较了 2001-2020 年期间对 6 月 1 日、7 月 1 日、8 月 1 日和 9 月 1 日初始化的泛北极海冰范围(SIE)、区域 SIE 和当地海冰浓度(SIC)的预测能力。这套不同的统计和动力学模式可以单独预测线性去趋势的泛北极海冰面积异常,多模式中值预测在这些初始化时间的相关系数分别为 0.79、0.86、0.92 和 0.99。在阿拉斯加和西伯利亚地区,区域 SIE 预测与泛北极预测的技能相似,而在加拿大、大西洋和北极中部地区,区域技能较低。在泛北 SIE 的预测中,动力学模式和统计模式的技能基本相当,而在区域和局地预测中,动力学模式优于统计模式。在 1996 年、2007 年和 2012 年的极端 SIE 年,相对于基本参考预报,预测系统提供了最大的附加值。SIE预测误差没有显示出明显的时间趋势,表明卫星时代海冰固有的可预测性变化极小。总之,这项研究表明,至少提前三个月对九月海冰进行熟练的业务预测前景广阔。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.80
自引率
6.20%
发文量
231
审稿时长
6-12 weeks
期刊介绍: The Bulletin of the American Meteorological Society (BAMS) is the flagship magazine of AMS and publishes articles of interest and significance for the weather, water, and climate community as well as news, editorials, and reviews for AMS members.
期刊最新文献
A Climate Services Dialog to Build Sector-Based Climate Early Warning Systems in the Republic of Palau East African Megacity Air Quality: Rationale and Framework for a Measurement and Modeling Program Influences of Anthropogenic Forcing on the Exceptionally Warm August 2022 over the Eastern Tibetan Plateau Attribution of the Extreme 2022 Summer Drought along the Yangtze River Valley in China Based on Detection and Attribution System of Chinese Academy of Sciences New WMO Certified Tropical Cyclone Duration Extreme: TC Freddy (04 February to 14 March 2023) Lasting for 36.0 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1