Xiaoling Gu, Junkai Zhu, Yongkang Wong, Zizhao Wu, Jun Yu, Jianping Fan, Mohan S. Kankanhalli
{"title":"Recurrent Appearance Flow for Occlusion-Free Virtual Try-On","authors":"Xiaoling Gu, Junkai Zhu, Yongkang Wong, Zizhao Wu, Jun Yu, Jianping Fan, Mohan S. Kankanhalli","doi":"10.1145/3659581","DOIUrl":null,"url":null,"abstract":"<p>Image-based virtual try-on aims at transferring a target in-shop garment onto a reference person, which has garnered significant attention from the research communities recently. However, previous methods have faced severe challenges in handling occlusion problems. To address this limitation, we classify occlusion problems into three types based on the reference person’s arm postures: <i>single-arm occlusion</i>, <i>two-arm non-crossed occlusion</i>, and <i>two-arm crossed occlusion</i>. Specifically, we propose a novel Occlusion-Free Virtual Try-On Network (OF-VTON) that effectively overcomes these occlusion challenges. The OF-VTON framework consists of two core components: i) a new <i>Recurrent Appearance Flow based Deformation</i> (RAFD) model that robustly aligns the in-shop garment to the reference person by adopting a <i>multi-task learning strategy</i>. This model jointly produces the dense appearance flow to warp the garment and predicts a human segmentation map to provide semantic guidance for the subsequent image synthesis model. ii) a powerful <i>Multi-mask Image SynthesiS</i> (MISS) model that generates photo-realistic try-on results by introducing a new <i>mask generation and selection mechanism</i>. Experimental results demonstrate that our proposed OF-VTON significantly outperforms existing state-of-the-art methods by mitigating the impact of occlusion problems. Our code is available at https://github.com/gxl-groups/OF-VTON.</p>","PeriodicalId":50937,"journal":{"name":"ACM Transactions on Multimedia Computing Communications and Applications","volume":"19 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Multimedia Computing Communications and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3659581","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Image-based virtual try-on aims at transferring a target in-shop garment onto a reference person, which has garnered significant attention from the research communities recently. However, previous methods have faced severe challenges in handling occlusion problems. To address this limitation, we classify occlusion problems into three types based on the reference person’s arm postures: single-arm occlusion, two-arm non-crossed occlusion, and two-arm crossed occlusion. Specifically, we propose a novel Occlusion-Free Virtual Try-On Network (OF-VTON) that effectively overcomes these occlusion challenges. The OF-VTON framework consists of two core components: i) a new Recurrent Appearance Flow based Deformation (RAFD) model that robustly aligns the in-shop garment to the reference person by adopting a multi-task learning strategy. This model jointly produces the dense appearance flow to warp the garment and predicts a human segmentation map to provide semantic guidance for the subsequent image synthesis model. ii) a powerful Multi-mask Image SynthesiS (MISS) model that generates photo-realistic try-on results by introducing a new mask generation and selection mechanism. Experimental results demonstrate that our proposed OF-VTON significantly outperforms existing state-of-the-art methods by mitigating the impact of occlusion problems. Our code is available at https://github.com/gxl-groups/OF-VTON.
期刊介绍:
The ACM Transactions on Multimedia Computing, Communications, and Applications is the flagship publication of the ACM Special Interest Group in Multimedia (SIGMM). It is soliciting paper submissions on all aspects of multimedia. Papers on single media (for instance, audio, video, animation) and their processing are also welcome.
TOMM is a peer-reviewed, archival journal, available in both print form and digital form. The Journal is published quarterly; with roughly 7 23-page articles in each issue. In addition, all Special Issues are published online-only to ensure a timely publication. The transactions consists primarily of research papers. This is an archival journal and it is intended that the papers will have lasting importance and value over time. In general, papers whose primary focus is on particular multimedia products or the current state of the industry will not be included.