{"title":"A unified momentum-based paradigm of decentralized SGD for non-convex models and heterogeneous data","authors":"Haizhou Du, Chaoqian Cheng, Chengdong Ni","doi":"10.1016/j.artint.2024.104130","DOIUrl":null,"url":null,"abstract":"<div><p>Emerging distributed applications recently boosted the development of decentralized machine learning, especially in IoT and edge computing fields. In real-world scenarios, the common problems of non-convexity and data heterogeneity result in inefficiency, performance degradation, and development stagnation. The bulk of studies concentrate on one of the issues mentioned above without having a more general framework that has been proven optimal. To this end, we propose a unified paradigm called UMP, which comprises two algorithms <span>D-SUM</span> and <span>GT-DSUM</span> based on the momentum technique with decentralized stochastic gradient descent (SGD). The former provides a convergence guarantee for general non-convex objectives, while the latter is extended by introducing gradient tracking, which estimates the global optimization direction to mitigate data heterogeneity (<em>i.e.</em>, distribution drift). We can cover most momentum-based variants based on the classical heavy ball or Nesterov's acceleration with different parameters in UMP. In theory, we rigorously provide the convergence analysis of these two approaches for non-convex objectives and conduct extensive experiments, demonstrating a significant improvement in model accuracy up to 57.6% compared to other methods in practice.</p></div>","PeriodicalId":8434,"journal":{"name":"Artificial Intelligence","volume":"332 ","pages":"Article 104130"},"PeriodicalIF":5.1000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0004370224000663","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Emerging distributed applications recently boosted the development of decentralized machine learning, especially in IoT and edge computing fields. In real-world scenarios, the common problems of non-convexity and data heterogeneity result in inefficiency, performance degradation, and development stagnation. The bulk of studies concentrate on one of the issues mentioned above without having a more general framework that has been proven optimal. To this end, we propose a unified paradigm called UMP, which comprises two algorithms D-SUM and GT-DSUM based on the momentum technique with decentralized stochastic gradient descent (SGD). The former provides a convergence guarantee for general non-convex objectives, while the latter is extended by introducing gradient tracking, which estimates the global optimization direction to mitigate data heterogeneity (i.e., distribution drift). We can cover most momentum-based variants based on the classical heavy ball or Nesterov's acceleration with different parameters in UMP. In theory, we rigorously provide the convergence analysis of these two approaches for non-convex objectives and conduct extensive experiments, demonstrating a significant improvement in model accuracy up to 57.6% compared to other methods in practice.
期刊介绍:
The Journal of Artificial Intelligence (AIJ) welcomes papers covering a broad spectrum of AI topics, including cognition, automated reasoning, computer vision, machine learning, and more. Papers should demonstrate advancements in AI and propose innovative approaches to AI problems. Additionally, the journal accepts papers describing AI applications, focusing on how new methods enhance performance rather than reiterating conventional approaches. In addition to regular papers, AIJ also accepts Research Notes, Research Field Reviews, Position Papers, Book Reviews, and summary papers on AI challenges and competitions.