Majid Haddad Momeni, Aleksi Zitting, Vilma Jäämuru, Rosaliina Turunen, Paavo Penttilä, Garry W. Buchko, Salla Hiltunen, Natalia Maiorova, Anu Koivula, Janak Sapkota, Kaisa Marjamaa, Emma R. Master
{"title":"Insights into the action of phylogenetically diverse microbial expansins on the structure of cellulose microfibrils","authors":"Majid Haddad Momeni, Aleksi Zitting, Vilma Jäämuru, Rosaliina Turunen, Paavo Penttilä, Garry W. Buchko, Salla Hiltunen, Natalia Maiorova, Anu Koivula, Janak Sapkota, Kaisa Marjamaa, Emma R. Master","doi":"10.1186/s13068-024-02500-w","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Microbial expansins (EXLXs) are non-lytic proteins homologous to plant expansins involved in plant cell wall formation. Due to their non-lytic cell wall loosening properties and potential to disaggregate cellulosic structures, there is considerable interest in exploring the ability of microbial expansins (EXLX) to assist the processing of cellulosic biomass for broader biotechnological applications. Herein, EXLXs with different modular structure and from diverse phylogenetic origin were compared in terms of ability to bind cellulosic, xylosic, and chitinous substrates, to structurally modify cellulosic fibrils, and to boost enzymatic deconstruction of hardwood pulp.</p><h3>Results</h3><p>Five heterogeneously produced EXLXs (<i>Clavibacter michiganensis; Cmi</i>EXLX2, <i>Dickeya aquatica; Daq</i>EXLX1, <i>Xanthomonas sacchari; Xsa</i>EXLX1, <i>Nothophytophthora sp.; Nsp</i>EXLX1 and <i>Phytophthora cactorum; Pca</i>EXLX1) were shown to bind xylan and hardwood pulp at pH 5.5 and <i>Cmi</i>EXLX2 (harboring a family-2 carbohydrate-binding module) also bound well to crystalline cellulose. Small-angle X-ray scattering revealed a 20–25% increase in interfibrillar distance between neighboring cellulose microfibrils following treatment with <i>Cmi</i>EXLX2, <i>Daq</i>EXLX1, or <i>Nsp</i>EXLX1. Correspondingly, combining xylanase with <i>Cmi</i>EXLX2 and <i>Daq</i>EXLX1 increased product yield from hardwood pulp by ~ 25%, while supplementing the <i>Tr</i>AA9A LPMO from <i>Trichoderma reesei</i> with <i>Cmi</i>EXLX2, <i>Daq</i>EXLX1, and <i>Nsp</i>EXLX1 increased total product yield by over 35%.</p><h3>Conclusion</h3><p>This direct comparison of diverse EXLXs revealed consistent impacts on interfibrillar spacing of cellulose microfibers and performance of carbohydrate-active enzymes predicted to act on fiber surfaces. These findings uncover new possibilities to employ EXLXs in the creation of value-added materials from cellulosic biomass.</p></div>","PeriodicalId":494,"journal":{"name":"Biotechnology for Biofuels","volume":"17 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://biotechnologyforbiofuels.biomedcentral.com/counter/pdf/10.1186/s13068-024-02500-w","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology for Biofuels","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1186/s13068-024-02500-w","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Microbial expansins (EXLXs) are non-lytic proteins homologous to plant expansins involved in plant cell wall formation. Due to their non-lytic cell wall loosening properties and potential to disaggregate cellulosic structures, there is considerable interest in exploring the ability of microbial expansins (EXLX) to assist the processing of cellulosic biomass for broader biotechnological applications. Herein, EXLXs with different modular structure and from diverse phylogenetic origin were compared in terms of ability to bind cellulosic, xylosic, and chitinous substrates, to structurally modify cellulosic fibrils, and to boost enzymatic deconstruction of hardwood pulp.
Results
Five heterogeneously produced EXLXs (Clavibacter michiganensis; CmiEXLX2, Dickeya aquatica; DaqEXLX1, Xanthomonas sacchari; XsaEXLX1, Nothophytophthora sp.; NspEXLX1 and Phytophthora cactorum; PcaEXLX1) were shown to bind xylan and hardwood pulp at pH 5.5 and CmiEXLX2 (harboring a family-2 carbohydrate-binding module) also bound well to crystalline cellulose. Small-angle X-ray scattering revealed a 20–25% increase in interfibrillar distance between neighboring cellulose microfibrils following treatment with CmiEXLX2, DaqEXLX1, or NspEXLX1. Correspondingly, combining xylanase with CmiEXLX2 and DaqEXLX1 increased product yield from hardwood pulp by ~ 25%, while supplementing the TrAA9A LPMO from Trichoderma reesei with CmiEXLX2, DaqEXLX1, and NspEXLX1 increased total product yield by over 35%.
Conclusion
This direct comparison of diverse EXLXs revealed consistent impacts on interfibrillar spacing of cellulose microfibers and performance of carbohydrate-active enzymes predicted to act on fiber surfaces. These findings uncover new possibilities to employ EXLXs in the creation of value-added materials from cellulosic biomass.
期刊介绍:
Biotechnology for Biofuels is an open access peer-reviewed journal featuring high-quality studies describing technological and operational advances in the production of biofuels, chemicals and other bioproducts. The journal emphasizes understanding and advancing the application of biotechnology and synergistic operations to improve plants and biological conversion systems for the biological production of these products from biomass, intermediates derived from biomass, or CO2, as well as upstream or downstream operations that are integral to biological conversion of biomass.
Biotechnology for Biofuels focuses on the following areas:
• Development of terrestrial plant feedstocks
• Development of algal feedstocks
• Biomass pretreatment, fractionation and extraction for biological conversion
• Enzyme engineering, production and analysis
• Bacterial genetics, physiology and metabolic engineering
• Fungal/yeast genetics, physiology and metabolic engineering
• Fermentation, biocatalytic conversion and reaction dynamics
• Biological production of chemicals and bioproducts from biomass
• Anaerobic digestion, biohydrogen and bioelectricity
• Bioprocess integration, techno-economic analysis, modelling and policy
• Life cycle assessment and environmental impact analysis