Asynchronous progressive iterative approximation method for least squares fitting

IF 1.3 4区 计算机科学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING Computer Aided Geometric Design Pub Date : 2024-04-23 DOI:10.1016/j.cagd.2024.102295
Nian-Ci Wu , Chengzhi Liu
{"title":"Asynchronous progressive iterative approximation method for least squares fitting","authors":"Nian-Ci Wu ,&nbsp;Chengzhi Liu","doi":"10.1016/j.cagd.2024.102295","DOIUrl":null,"url":null,"abstract":"<div><p>For large data fitting, the least squares progressive iterative approximation (LSPIA) methods have been proposed by <span>Lin and Zhang (2013)</span> and <span>Deng and Lin (2014)</span>, in which a constant step size is used. In this paper, we further accelerate the LSPIA method in terms of a Chebyshev semi-iterative scheme and present an asynchronous LSPIA (denoted by ALSPIA) method. The control points in ALSPIA are updated by using an extrapolated variant in which an adaptive step size is chosen according to the roots of Chebyshev polynomial. Our convergence analysis shows that ALSPIA is faster than the original LSPIA method in both singular and non-singular least squares fitting cases. Numerical examples show that the proposed algorithm is feasible and effective.</p></div>","PeriodicalId":55226,"journal":{"name":"Computer Aided Geometric Design","volume":"111 ","pages":"Article 102295"},"PeriodicalIF":1.3000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Aided Geometric Design","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167839624000293","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

For large data fitting, the least squares progressive iterative approximation (LSPIA) methods have been proposed by Lin and Zhang (2013) and Deng and Lin (2014), in which a constant step size is used. In this paper, we further accelerate the LSPIA method in terms of a Chebyshev semi-iterative scheme and present an asynchronous LSPIA (denoted by ALSPIA) method. The control points in ALSPIA are updated by using an extrapolated variant in which an adaptive step size is chosen according to the roots of Chebyshev polynomial. Our convergence analysis shows that ALSPIA is faster than the original LSPIA method in both singular and non-singular least squares fitting cases. Numerical examples show that the proposed algorithm is feasible and effective.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于最小二乘法拟合的异步渐进迭代逼近法
对于大数据拟合,Lin 和 Zhang(2013 年)以及 Deng 和 Lin(2014 年)提出了最小二乘渐进迭代逼近(LSPIA)方法,其中使用了恒定步长。在本文中,我们用切比雪夫半迭代方案进一步加速了 LSPIA 方法,并提出了一种异步 LSPIA 方法(用 ALSPIA 表示)。ALSPIA 中的控制点是通过外推变体更新的,其中根据切比雪夫多项式的根选择自适应步长。我们的收敛分析表明,在奇异和非奇异最小二乘法拟合情况下,ALSPIA 比原始 LSPIA 方法更快。数值实例表明,所提出的算法是可行且有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computer Aided Geometric Design
Computer Aided Geometric Design 工程技术-计算机:软件工程
CiteScore
3.50
自引率
13.30%
发文量
57
审稿时长
60 days
期刊介绍: The journal Computer Aided Geometric Design is for researchers, scholars, and software developers dealing with mathematical and computational methods for the description of geometric objects as they arise in areas ranging from CAD/CAM to robotics and scientific visualization. The journal publishes original research papers, survey papers and with quick editorial decisions short communications of at most 3 pages. The primary objects of interest are curves, surfaces, and volumes such as splines (NURBS), meshes, subdivision surfaces as well as algorithms to generate, analyze, and manipulate them. This journal will report on new developments in CAGD and its applications, including but not restricted to the following: -Mathematical and Geometric Foundations- Curve, Surface, and Volume generation- CAGD applications in Numerical Analysis, Computational Geometry, Computer Graphics, or Computer Vision- Industrial, medical, and scientific applications. The aim is to collect and disseminate information on computer aided design in one journal. To provide the user community with methods and algorithms for representing curves and surfaces. To illustrate computer aided geometric design by means of interesting applications. To combine curve and surface methods with computer graphics. To explain scientific phenomena by means of computer graphics. To concentrate on the interaction between theory and application. To expose unsolved problems of the practice. To develop new methods in computer aided geometry.
期刊最新文献
A novel heterogeneous deformable surface model based on elasticity Optimal one-sided approximants of circular arc Editorial Board Build orientation optimization considering thermal distortion in additive manufacturing Algorithms and data structures for Cs-smooth RMB-splines of degree 2s + 1
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1