Efficient Synthesis of (S)-Nornicotine using Co-Immobilized IRED and GDH in Batch and Continuous Flow Reaction Systems

IF 3.1 3区 化学 Q2 CHEMISTRY, APPLIED Organic Process Research & Development Pub Date : 2024-04-25 DOI:10.1021/acs.oprd.4c00130
Senling Guan, Wenfeng Zhou, Yongtang Yue, Songhe Wang, Bo Chen and Haishen Yang*, 
{"title":"Efficient Synthesis of (S)-Nornicotine using Co-Immobilized IRED and GDH in Batch and Continuous Flow Reaction Systems","authors":"Senling Guan,&nbsp;Wenfeng Zhou,&nbsp;Yongtang Yue,&nbsp;Songhe Wang,&nbsp;Bo Chen and Haishen Yang*,&nbsp;","doi":"10.1021/acs.oprd.4c00130","DOIUrl":null,"url":null,"abstract":"<p >Nicotine is the chief addictive ingredient in cigarettes, cigars, and snuff, and has extensive applications in the agricultural and pharmaceutical industries. The synthesis of nicotine using free enzyme systems has been widely reported in literature; this approach chiefly utilizes the alkaloid myosmine and the enzymes imine reductase (IRED) as well as glucose dehydrogenase (GDH), and generates the intermediate (<i>S</i>)-nornicotine. Free enzymes are not reusable, thereby resulting in higher cost of production. The use of recyclable immobilized enzymes is an efficient approach for lowering the costs and improving the efficiency of production. In the current study, we present an efficient and environment-friendly approach utilizing immobilized enzymes for synthesizing (<i>S</i>)-nornicotine using batch and continuous flow reaction processes. A highly active coimmobilized enzyme system was successfully obtained by coimmobilizing IRED and GDH on the resin LXTE-706. The immobilized enzymes were amenable to repeated usage for at least 40 operation cycles in the batch mode of operation and yielded a product with a high chiral purity of &gt;99.90%, effectively reducing the overall production cost. Furthermore, a space–time yield of 211.47 g/Lh was obtained using a continuous mode of operation, which is 289.7-fold higher than that obtained with batch mode.</p>","PeriodicalId":55,"journal":{"name":"Organic Process Research & Development","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Process Research & Development","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.oprd.4c00130","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Nicotine is the chief addictive ingredient in cigarettes, cigars, and snuff, and has extensive applications in the agricultural and pharmaceutical industries. The synthesis of nicotine using free enzyme systems has been widely reported in literature; this approach chiefly utilizes the alkaloid myosmine and the enzymes imine reductase (IRED) as well as glucose dehydrogenase (GDH), and generates the intermediate (S)-nornicotine. Free enzymes are not reusable, thereby resulting in higher cost of production. The use of recyclable immobilized enzymes is an efficient approach for lowering the costs and improving the efficiency of production. In the current study, we present an efficient and environment-friendly approach utilizing immobilized enzymes for synthesizing (S)-nornicotine using batch and continuous flow reaction processes. A highly active coimmobilized enzyme system was successfully obtained by coimmobilizing IRED and GDH on the resin LXTE-706. The immobilized enzymes were amenable to repeated usage for at least 40 operation cycles in the batch mode of operation and yielded a product with a high chiral purity of >99.90%, effectively reducing the overall production cost. Furthermore, a space–time yield of 211.47 g/Lh was obtained using a continuous mode of operation, which is 289.7-fold higher than that obtained with batch mode.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在间歇和连续流反应系统中使用共固定 IRED 和 GDH 高效合成 (S)-龙脑香碱
尼古丁是香烟、雪茄和鼻烟中的主要致瘾成分,在农业和制药业中有着广泛的应用。文献中广泛报道了利用游离酶系统合成尼古丁的方法;这种方法主要利用生物碱肌氨酸和亚胺还原酶(IRED)以及葡萄糖脱氢酶(GDH),并生成中间体(S)-烟碱。游离酶不能重复使用,因此生产成本较高。使用可回收的固定化酶是降低成本和提高生产效率的有效方法。在当前的研究中,我们提出了一种利用固定化酶的高效环保方法,利用间歇和连续流反应过程合成 (S)-龙脑香碱。通过将 IRED 和 GDH 共固定在树脂 LXTE-706 上,成功地获得了高活性的共固定化酶系统。固定化酶可在间歇操作模式下重复使用至少 40 个操作周期,并可获得手性纯度高达 99.90% 的产品,从而有效降低了总体生产成本。此外,连续操作模式的时空产率为 211.47 g/Lh,是间歇操作模式的 289.7 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.90
自引率
14.70%
发文量
251
审稿时长
2 months
期刊介绍: The journal Organic Process Research & Development serves as a communication tool between industrial chemists and chemists working in universities and research institutes. As such, it reports original work from the broad field of industrial process chemistry but also presents academic results that are relevant, or potentially relevant, to industrial applications. Process chemistry is the science that enables the safe, environmentally benign and ultimately economical manufacturing of organic compounds that are required in larger amounts to help address the needs of society. Consequently, the Journal encompasses every aspect of organic chemistry, including all aspects of catalysis, synthetic methodology development and synthetic strategy exploration, but also includes aspects from analytical and solid-state chemistry and chemical engineering, such as work-up tools,process safety, or flow-chemistry. The goal of development and optimization of chemical reactions and processes is their transfer to a larger scale; original work describing such studies and the actual implementation on scale is highly relevant to the journal. However, studies on new developments from either industry, research institutes or academia that have not yet been demonstrated on scale, but where an industrial utility can be expected and where the study has addressed important prerequisites for a scale-up and has given confidence into the reliability and practicality of the chemistry, also serve the mission of OPR&D as a communication tool between the different contributors to the field.
期刊最新文献
Derisking Crystallization Process Development and Scale-Up Using a Complementary, “Quick and Dirty” Digital Design Catalytic Activity of Triphenylphosphine for Electrophilic Aromatic Bromination Using N-Bromosuccinimide and Process Safety Evaluation Organozinc Reagents: Highly Efficient Scalable Continuous Conversion in Various Concentrations and Reaction Types Synthesis of Enantiopure Fluoropiperidines via Biocatalytic Desymmetrization and Flow Photochemical Decarboxylative Fluorination Economic, One-Pot Synthesis of Diethyl Furoxan Dicarboxylate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1