BioReactPy: An open-source software for simulation of microbial-mediated reactive processes in porous media

IF 2.6 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Applied Computing and Geosciences Pub Date : 2024-04-21 DOI:10.1016/j.acags.2024.100166
M. Starnoni, M.A. Dawi, X. Sanchez-Vila
{"title":"BioReactPy: An open-source software for simulation of microbial-mediated reactive processes in porous media","authors":"M. Starnoni,&nbsp;M.A. Dawi,&nbsp;X. Sanchez-Vila","doi":"10.1016/j.acags.2024.100166","DOIUrl":null,"url":null,"abstract":"<div><p>This paper provides a new open-source software, named BioReactPy, for simulation of microbial-mediated coupled processes of flow and reactive transport in porous media. The software is based on the micro-continuum approach, and geochemistry is handled in a fully coupled manner with biomass-nutrient growth treated with Monod equation in a single integrated framework, without dependencies on third party packages. The distinguishing features of the software, its design principles, and formulation of multiphysics problems and discretizations are discussed. Validation of the <em>Python</em> implementation using several established benchmarks for flow, reactive transport, and biomass growth is presented. The flexibility of the framework is then illustrated by simulations of highly non-linearly coupled flow and microbial reactive transport at conditions relevant to carbon mineralization for CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> storage. All results can be reproduced by openly available simulation scripts.</p></div>","PeriodicalId":33804,"journal":{"name":"Applied Computing and Geosciences","volume":"22 ","pages":"Article 100166"},"PeriodicalIF":2.6000,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590197424000132/pdfft?md5=0356eeaf365220fb8e4e4b0812a35643&pid=1-s2.0-S2590197424000132-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing and Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590197424000132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper provides a new open-source software, named BioReactPy, for simulation of microbial-mediated coupled processes of flow and reactive transport in porous media. The software is based on the micro-continuum approach, and geochemistry is handled in a fully coupled manner with biomass-nutrient growth treated with Monod equation in a single integrated framework, without dependencies on third party packages. The distinguishing features of the software, its design principles, and formulation of multiphysics problems and discretizations are discussed. Validation of the Python implementation using several established benchmarks for flow, reactive transport, and biomass growth is presented. The flexibility of the framework is then illustrated by simulations of highly non-linearly coupled flow and microbial reactive transport at conditions relevant to carbon mineralization for CO2 storage. All results can be reproduced by openly available simulation scripts.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BioReactPy:模拟多孔介质中微生物介导的反应过程的开源软件
本文提供了一种新的开源软件,名为 BioReactPy,用于模拟多孔介质中微生物介导的流动和反应传输耦合过程。该软件基于微连续方法,在一个单一的集成框架中,以完全耦合的方式处理地球化学和用莫诺方程处理的生物质-营养生长,而不依赖第三方软件包。讨论了该软件的显著特点、设计原则、多物理场问题的表述和离散化。此外,还介绍了使用几个已建立的流动、反应传输和生物质生长基准对 Python 实现的验证。然后,通过模拟在二氧化碳封存的碳矿化相关条件下高度非线性耦合的流动和微生物反应传输,说明了该框架的灵活性。所有结果均可通过公开的模拟脚本重现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Computing and Geosciences
Applied Computing and Geosciences Computer Science-General Computer Science
CiteScore
5.50
自引率
0.00%
发文量
23
审稿时长
5 weeks
期刊最新文献
Revolutionizing the future of hydrological science: Impact of machine learning and deep learning amidst emerging explainable AI and transfer learning Generating land gravity anomalies from satellite gravity observations using PIX2PIX GAN image translation Reconstruction of reservoir rock using attention-based convolutional recurrent neural network Mapping landforms of a hilly landscape using machine learning and high-resolution LiDAR topographic data Evaluating the performances of SVR and XGBoost for short-range forecasting of heatwaves across different temperature zones of India
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1