{"title":"Geometric deviation during incremental sheet forming process: Analytical modeling and experiment","authors":"Zhidong Chang , Mei Yang , Jun Chen","doi":"10.1016/j.ijmachtools.2024.104160","DOIUrl":null,"url":null,"abstract":"<div><p>Incremental sheet forming (ISF), a promising and flexible forming method, is generally restricted by the unsatisfied geometric deviation for industrial applications; therefore, effective control and accurate prediction of geometric deviation in ISF are essential for quality improvement. However, the geometric deviation in ISF is extremely sensitive to the geometric shape, toolpath, and process parameters, which is challenging to predict and control. In this study, the comprehensive geometric-related mechanisms in ISF were analyzed, including springback after local bending of the bent and contact zones, and the elastic deflection of the inclined wall, particularly the associated deformation in the weak-stiffness region. Through a creative equivalent mapping method for calculating the elastic deflection of complex structures and modeling the bending moment distribution in different zones, an analytical model was developed to accurately and universally predict the geometric deviations of parts by ISF. Based on the results of the experiments and comparative studies using a response surface model, the proposed model provided superior capability for predicting the geometric accuracies of parts made using ISF with different sheet materials, process parameters, and geometric shapes, even for complex parts with non-axisymmetric structures and stepped features. The geometric-related mechanisms, forming characteristics, and influences of crucial parameters in ISF are discussed by adopting an analytical model combined with numerical simulations, demonstrating that the elastic deflection on the inclined wall, particularly the associated deformation in the weak-stiffness region, plays a primary role in the geometric deviation of complex parts compared with other geometric-related mechanisms.</p></div>","PeriodicalId":14011,"journal":{"name":"International Journal of Machine Tools & Manufacture","volume":"198 ","pages":"Article 104160"},"PeriodicalIF":14.0000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Machine Tools & Manufacture","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0890695524000464","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Incremental sheet forming (ISF), a promising and flexible forming method, is generally restricted by the unsatisfied geometric deviation for industrial applications; therefore, effective control and accurate prediction of geometric deviation in ISF are essential for quality improvement. However, the geometric deviation in ISF is extremely sensitive to the geometric shape, toolpath, and process parameters, which is challenging to predict and control. In this study, the comprehensive geometric-related mechanisms in ISF were analyzed, including springback after local bending of the bent and contact zones, and the elastic deflection of the inclined wall, particularly the associated deformation in the weak-stiffness region. Through a creative equivalent mapping method for calculating the elastic deflection of complex structures and modeling the bending moment distribution in different zones, an analytical model was developed to accurately and universally predict the geometric deviations of parts by ISF. Based on the results of the experiments and comparative studies using a response surface model, the proposed model provided superior capability for predicting the geometric accuracies of parts made using ISF with different sheet materials, process parameters, and geometric shapes, even for complex parts with non-axisymmetric structures and stepped features. The geometric-related mechanisms, forming characteristics, and influences of crucial parameters in ISF are discussed by adopting an analytical model combined with numerical simulations, demonstrating that the elastic deflection on the inclined wall, particularly the associated deformation in the weak-stiffness region, plays a primary role in the geometric deviation of complex parts compared with other geometric-related mechanisms.
期刊介绍:
The International Journal of Machine Tools and Manufacture is dedicated to advancing scientific comprehension of the fundamental mechanics involved in processes and machines utilized in the manufacturing of engineering components. While the primary focus is on metals, the journal also explores applications in composites, ceramics, and other structural or functional materials. The coverage includes a diverse range of topics:
- Essential mechanics of processes involving material removal, accretion, and deformation, encompassing solid, semi-solid, or particulate forms.
- Significant scientific advancements in existing or new processes and machines.
- In-depth characterization of workpiece materials (structure/surfaces) through advanced techniques (e.g., SEM, EDS, TEM, EBSD, AES, Raman spectroscopy) to unveil new phenomenological aspects governing manufacturing processes.
- Tool design, utilization, and comprehensive studies of failure mechanisms.
- Innovative concepts of machine tools, fixtures, and tool holders supported by modeling and demonstrations relevant to manufacturing processes within the journal's scope.
- Novel scientific contributions exploring interactions between the machine tool, control system, software design, and processes.
- Studies elucidating specific mechanisms governing niche processes (e.g., ultra-high precision, nano/atomic level manufacturing with either mechanical or non-mechanical "tools").
- Innovative approaches, underpinned by thorough scientific analysis, addressing emerging or breakthrough processes (e.g., bio-inspired manufacturing) and/or applications (e.g., ultra-high precision optics).