Non-local diffusion-based biomarkers in patients with cocaine use disorder

Q4 Neuroscience Neuroimage. Reports Pub Date : 2024-04-26 DOI:10.1016/j.ynirp.2024.100202
Alfonso Estudillo-Romero , Raffaella Migliaccio , Bénédicte Batrancourt , Pierre Jannin , John S.H. Baxter
{"title":"Non-local diffusion-based biomarkers in patients with cocaine use disorder","authors":"Alfonso Estudillo-Romero ,&nbsp;Raffaella Migliaccio ,&nbsp;Bénédicte Batrancourt ,&nbsp;Pierre Jannin ,&nbsp;John S.H. Baxter","doi":"10.1016/j.ynirp.2024.100202","DOIUrl":null,"url":null,"abstract":"<div><p>Cocaine use disorder (CUD) is widely known to result in neurological reconfiguration which can be observed via local diffusivity characteristics of the brain. These changes can be highly correlated while simultaneously variable across patients with different comorbidities or histories of substance use. This implies that more complex neuroimage analysis tools may be necessary to better detect specific biomarkers that vary across these dimensions. We investigated white and gray matter integrity using voxel-based diktiometry (VBD) on whole brain diffusion tensor images (DTI) across a database of CUD patients and healthy controls using a purely data-driven approach. These VBD maps reveal significant cortical and subcortical differences that are indicative of these neural modifications including the insula, cerebellum, ventricles, thalamo-cortical radiations, and corpus callosum bundles. In order to disambiguate these results and investigate the heterogeneity of CUD, the VBD maps have been decomposed into five decorrelated biomarkers: one in the region surrounding the left insula, one implicating the corpus callosum, two concentrated in the left cerebellum, and the last concerning a proximal region of the interhemispheric fissure which serve as potential biomarkers playing a role in CUD. These decorrelated biomarkers have themselves been correlated with consumption patterns and psychiatric and borderline personality disorder scores on the CUD patient group. This preliminary approach to using machine learning techniques to both detect and disambiguate complex non-linear patterns shows promise for better understanding complex and heterogeneous disorders such as CUD.</p></div>","PeriodicalId":74277,"journal":{"name":"Neuroimage. Reports","volume":"4 2","pages":"Article 100202"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666956024000084/pdfft?md5=0e4ba58ab2085181c541cca6b191df44&pid=1-s2.0-S2666956024000084-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroimage. Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666956024000084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 0

Abstract

Cocaine use disorder (CUD) is widely known to result in neurological reconfiguration which can be observed via local diffusivity characteristics of the brain. These changes can be highly correlated while simultaneously variable across patients with different comorbidities or histories of substance use. This implies that more complex neuroimage analysis tools may be necessary to better detect specific biomarkers that vary across these dimensions. We investigated white and gray matter integrity using voxel-based diktiometry (VBD) on whole brain diffusion tensor images (DTI) across a database of CUD patients and healthy controls using a purely data-driven approach. These VBD maps reveal significant cortical and subcortical differences that are indicative of these neural modifications including the insula, cerebellum, ventricles, thalamo-cortical radiations, and corpus callosum bundles. In order to disambiguate these results and investigate the heterogeneity of CUD, the VBD maps have been decomposed into five decorrelated biomarkers: one in the region surrounding the left insula, one implicating the corpus callosum, two concentrated in the left cerebellum, and the last concerning a proximal region of the interhemispheric fissure which serve as potential biomarkers playing a role in CUD. These decorrelated biomarkers have themselves been correlated with consumption patterns and psychiatric and borderline personality disorder scores on the CUD patient group. This preliminary approach to using machine learning techniques to both detect and disambiguate complex non-linear patterns shows promise for better understanding complex and heterogeneous disorders such as CUD.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可卡因使用障碍患者的非局部扩散生物标志物
众所周知,可卡因使用障碍(CUD)会导致神经系统重构,这可以通过大脑局部扩散特性观察到。这些变化可能具有高度相关性,但同时在具有不同并发症或药物使用史的患者身上也会发生变化。这意味着可能需要更复杂的神经图像分析工具才能更好地检测出这些维度上不同的特定生物标志物。我们采用纯数据驱动的方法,在 CUD 患者和健康对照者数据库中的全脑弥散张量图像(DTI)上使用基于体素的二尖瓣测量法(VBD)研究了白质和灰质的完整性。这些 VBD 图揭示了皮层和皮层下的显著差异,这些差异表明了这些神经改变,包括岛叶、小脑、脑室、丘脑-皮层辐射和胼胝体束。为了区分这些结果并研究 CUD 的异质性,我们将 VBD 图分解为五个与装饰相关的生物标志物:一个位于左侧岛叶周围区域,一个涉及胼胝体,两个集中在左侧小脑,最后一个涉及半球间裂隙的近端区域,它们是在 CUD 中发挥作用的潜在生物标志物。这些与装饰相关的生物标志物本身与 CUD 患者群体的消费模式、精神疾病和边缘型人格障碍评分相关。这种利用机器学习技术检测和区分复杂的非线性模式的初步方法,为更好地理解 CUD 等复杂的异质性疾病带来了希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neuroimage. Reports
Neuroimage. Reports Neuroscience (General)
CiteScore
1.90
自引率
0.00%
发文量
0
审稿时长
87 days
期刊最新文献
Measuring cognitive load in multitasking using mobile fNIRS MRI-guided clustering of patients with mild dementia due to Alzheimer's disease using self-organizing maps Evaluating state-based network dynamics in anhedonia Unresponsiveness induced by sevoflurane and propofol is associated with reduced basal forebrain cholinergic nuclei functional connectivity in humans, a pilot exploratory study Increased functional connectivity of amygdalar-frontal pathways in patients with alcohol use disorder and childhood trauma
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1