Sensitive data identification for multi-category and multi-scenario data

IF 2.5 4区 计算机科学 Q3 TELECOMMUNICATIONS Transactions on Emerging Telecommunications Technologies Pub Date : 2024-04-25 DOI:10.1002/ett.4983
Yuning Cui, Yonghui Huang, Yongbing Bai, Yuchen Wang, Chao Wang
{"title":"Sensitive data identification for multi-category and multi-scenario data","authors":"Yuning Cui,&nbsp;Yonghui Huang,&nbsp;Yongbing Bai,&nbsp;Yuchen Wang,&nbsp;Chao Wang","doi":"10.1002/ett.4983","DOIUrl":null,"url":null,"abstract":"<p>Sensitive data identification is the prerequisite for protecting critical user and business data. Traditional methods usually only target a certain type of application scenario or a certain type of data, thus making it difficult to meet the needs of enterprise-level data protection. This paper proposes an introduction to the end-to-end sensitive data identification system of Beike Inc. The system consists of the data identification &amp; annotation platform, dataset management platform, and sensitive data identification model, which propose different governance methods for batch data and streaming data respectively. Specifically, we propose a sliding window-based identification method for long text to improve the identification of streaming data. Evaluation results show that this method can improve the effect of identifying long text sensitive data without losing the ability on short text, for the open source test dataset, the value can be up to 94.15, so it is applicable in diverse scenarios.</p>","PeriodicalId":23282,"journal":{"name":"Transactions on Emerging Telecommunications Technologies","volume":"35 5","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Emerging Telecommunications Technologies","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ett.4983","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Sensitive data identification is the prerequisite for protecting critical user and business data. Traditional methods usually only target a certain type of application scenario or a certain type of data, thus making it difficult to meet the needs of enterprise-level data protection. This paper proposes an introduction to the end-to-end sensitive data identification system of Beike Inc. The system consists of the data identification & annotation platform, dataset management platform, and sensitive data identification model, which propose different governance methods for batch data and streaming data respectively. Specifically, we propose a sliding window-based identification method for long text to improve the identification of streaming data. Evaluation results show that this method can improve the effect of identifying long text sensitive data without losing the ability on short text, for the open source test dataset, the value can be up to 94.15, so it is applicable in diverse scenarios.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多类别和多场景数据的敏感数据识别
敏感数据识别是保护关键用户和业务数据的前提。传统方法通常只针对某一类应用场景或某一类数据,难以满足企业级数据保护的需求。本文介绍了北科公司的端到端敏感数据识别系统。该系统由数据识别平台、标注平台、数据集管理平台和敏感数据识别模型组成,分别针对批量数据和流式数据提出了不同的治理方法。具体来说,我们提出了一种基于滑动窗口的长文本识别方法,以改进流数据的识别。评估结果表明,该方法在提高长文本敏感数据识别效果的同时,不失对短文本的识别能力,对于开源测试数据集,该值可达 94.15,适用于多种场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.90
自引率
13.90%
发文量
249
期刊介绍: ransactions on Emerging Telecommunications Technologies (ETT), formerly known as European Transactions on Telecommunications (ETT), has the following aims: - to attract cutting-edge publications from leading researchers and research groups around the world - to become a highly cited source of timely research findings in emerging fields of telecommunications - to limit revision and publication cycles to a few months and thus significantly increase attractiveness to publish - to become the leading journal for publishing the latest developments in telecommunications
期刊最新文献
Issue Information Innovative Video Anomaly Detection: TCN-AnoDetect With Self-Supervised Feature Learning Channel Estimation for IRS-Aided OTFS System Using Dilated Attention GAN Correction to A Secure and Decentralized Authentication and Data Transmission in Internet of Vehicles Using Blockchain and Ring-Based Cryptosystem Deep Adaptive Learning-Based Beam Combining Framework for 5G Millimeter-Wave Massive 3D-MIMO Uplink Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1