Topologically protected subradiant cavity polaritons through linewidth narrowing enabled by dissipationless edge states

IF 5.6 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Quantum Science and Technology Pub Date : 2024-04-25 DOI:10.1088/2058-9565/ad3f46
Yu-Wei Lu, Jing-Feng Liu, Haoxiang Jiang and Zeyang Liao
{"title":"Topologically protected subradiant cavity polaritons through linewidth narrowing enabled by dissipationless edge states","authors":"Yu-Wei Lu, Jing-Feng Liu, Haoxiang Jiang and Zeyang Liao","doi":"10.1088/2058-9565/ad3f46","DOIUrl":null,"url":null,"abstract":"Cavity polaritons derived from strong light–matter interaction provide a basis for efficient manipulation of quantum states via cavity field. Polaritons with narrow linewidth and long lifetime are appealing in applications, such as quantum sensing and storage. Here, we propose a prototypical arrangement to implement a whispering-gallery-mode resonator with one-dimensional topological atom mirror, which allows to boost the lifetime of cavity polaritons over an order of magnitude. This considerable enhancement attributes to the coupling of polaritonic states to dissipationless edge states protected by the topological bandgap of atom mirror that suppresses the leakage of cavity modes. When exceeding the width of Rabi splitting, topological bandgap can further reduce the dissipation from polaritonic states to bulk states, giving arise to subradiant cavity polaritons with extremely sharp linewidth. The resultant Rabi oscillation experiences decay rate lower than the free-space decay of a single quantum emitter. Inheriting from the topologically protected properties of edge states, the subradiance of cavity polaritons can be preserved in disordered atom mirror with moderate perturbations involving the atomic frequency, interaction strengths and location fluctuations. Our work opens up a new paradigm of topology-engineered quantum states with robust quantum coherence for future applications in quantum computing and network.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/ad3f46","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Cavity polaritons derived from strong light–matter interaction provide a basis for efficient manipulation of quantum states via cavity field. Polaritons with narrow linewidth and long lifetime are appealing in applications, such as quantum sensing and storage. Here, we propose a prototypical arrangement to implement a whispering-gallery-mode resonator with one-dimensional topological atom mirror, which allows to boost the lifetime of cavity polaritons over an order of magnitude. This considerable enhancement attributes to the coupling of polaritonic states to dissipationless edge states protected by the topological bandgap of atom mirror that suppresses the leakage of cavity modes. When exceeding the width of Rabi splitting, topological bandgap can further reduce the dissipation from polaritonic states to bulk states, giving arise to subradiant cavity polaritons with extremely sharp linewidth. The resultant Rabi oscillation experiences decay rate lower than the free-space decay of a single quantum emitter. Inheriting from the topologically protected properties of edge states, the subradiance of cavity polaritons can be preserved in disordered atom mirror with moderate perturbations involving the atomic frequency, interaction strengths and location fluctuations. Our work opens up a new paradigm of topology-engineered quantum states with robust quantum coherence for future applications in quantum computing and network.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过无耗散边缘态的线宽收窄实现拓扑保护亚辐射空腔极化子
源自强光-物质相互作用的空穴极化子为通过空穴场有效操纵量子态提供了基础。线宽窄、寿命长的极化子在量子传感和存储等应用中很有吸引力。在这里,我们提出了一种原型安排,以实现带有一维拓扑原子镜的耳语-画廊模式谐振器,从而将空腔极化子的寿命提高了一个数量级。这种显著的提升归功于极化子态与无耗散边缘态的耦合,而原子镜的拓扑带隙保护了极化子态,从而抑制了空腔模式的泄漏。当超过拉比分裂的宽度时,拓扑带隙能进一步减少从极化态到体态的耗散,从而产生线宽极其锐利的亚辐射空穴极化子。由此产生的拉比振荡的衰减率低于单量子发射器的自由空间衰减率。继承了边缘态的拓扑保护特性,空穴极化子的亚辐射性可以在涉及原子频率、相互作用强度和位置波动的适度扰动的无序原子镜中得以保留。我们的工作开辟了拓扑工程量子态的新范式,它具有强大的量子相干性,未来可应用于量子计算和网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Quantum Science and Technology
Quantum Science and Technology Materials Science-Materials Science (miscellaneous)
CiteScore
11.20
自引率
3.00%
发文量
133
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.
期刊最新文献
From architectures to applications: a review of neural quantum states OPA tomography of non-Gaussian states of light A linear photonic swap test circuit for quantum kernel estimation Practical twin-field quantum key distribution parameter optimization based on quantum annealing algorithm On the feasibility of detecting quantum delocalization effects on relativistic time dilation in optical clocks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1