Non-stationary buffeting responses of a twin-box girder suspension bridge with various evolutionary spectra

IF 3 3区 工程技术 Q2 ENGINEERING, MECHANICAL Probabilistic Engineering Mechanics Pub Date : 2024-04-01 DOI:10.1016/j.probengmech.2024.103625
Rui Zhou , Mingfeng He , Jinmei Cai , Haijun Zhou , Yongxin Yang , Dan Li
{"title":"Non-stationary buffeting responses of a twin-box girder suspension bridge with various evolutionary spectra","authors":"Rui Zhou ,&nbsp;Mingfeng He ,&nbsp;Jinmei Cai ,&nbsp;Haijun Zhou ,&nbsp;Yongxin Yang ,&nbsp;Dan Li","doi":"10.1016/j.probengmech.2024.103625","DOIUrl":null,"url":null,"abstract":"<div><p>The effects of evolutionary wind spectra with different modulation functions on the nonstationary buffeting responses of suspension bridges are uncertain. After considering the nonlinear buffeting force of a twin-box girder, the buffeting responses of a cross-sea suspension bridge under four nonstationary wind speed models with two uniform modulation and two nonuniform modulation functions were investigated in this paper. Through the evolutionary spectral theory, the nonstationary wind speed models at the bridge site with four typical modulation functions were generated and then validated from the autocorrelation and power spectrum density. The results show that the mean and root-mean-square error (RMSE) values of vertical and horizontal wind speeds by using nonuniform modulation functions (NMF1 and NMF2) were much larger than those by using uniform modulation functions (uMF1 and uMF2). Moreover, most of the peak and RMSE values for the torsional and lateral displacement under the NMF1 are the largest, while the RMSE values of the vertical displacement without the modulation function are the largest. With the increase of the circular frequency <span><math><mrow><mi>γ</mi></mrow></math></span> or decrease of the initial phase <span><math><mrow><mi>θ</mi></mrow></math></span> in the cosine function of time-varying mean wind speeds, the RMS values in three displacement responses of the bridge deck become larger.</p></div>","PeriodicalId":54583,"journal":{"name":"Probabilistic Engineering Mechanics","volume":"76 ","pages":"Article 103625"},"PeriodicalIF":3.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probabilistic Engineering Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S026689202400047X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The effects of evolutionary wind spectra with different modulation functions on the nonstationary buffeting responses of suspension bridges are uncertain. After considering the nonlinear buffeting force of a twin-box girder, the buffeting responses of a cross-sea suspension bridge under four nonstationary wind speed models with two uniform modulation and two nonuniform modulation functions were investigated in this paper. Through the evolutionary spectral theory, the nonstationary wind speed models at the bridge site with four typical modulation functions were generated and then validated from the autocorrelation and power spectrum density. The results show that the mean and root-mean-square error (RMSE) values of vertical and horizontal wind speeds by using nonuniform modulation functions (NMF1 and NMF2) were much larger than those by using uniform modulation functions (uMF1 and uMF2). Moreover, most of the peak and RMSE values for the torsional and lateral displacement under the NMF1 are the largest, while the RMSE values of the vertical displacement without the modulation function are the largest. With the increase of the circular frequency γ or decrease of the initial phase θ in the cosine function of time-varying mean wind speeds, the RMS values in three displacement responses of the bridge deck become larger.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有不同演化谱的双箱梁悬索桥的非稳态缓冲响应
不同调制功能的演化风频谱对悬索桥非稳态缓冲响应的影响尚不确定。在考虑了双箱梁的非线性缓冲力之后,本文研究了四种具有两种均匀调制和两种非均匀调制功能的非稳态风速模型下跨海悬索桥的缓冲响应。通过演化谱理论,生成了具有四种典型调制函数的桥址非稳态风速模型,并通过自相关和功率谱密度进行了验证。结果表明,使用非均匀调制函数(NMF1 和 NMF2)的垂直和水平风速的平均值和均方根误差(RMSE)值远大于使用均匀调制函数(uMF1 和 uMF2)的垂直和水平风速的平均值和均方根误差(RMSE)值。此外,在 NMF1 条件下,大部分扭转位移和侧向位移的峰值和均方根误差值最大,而不使用调制函数的垂直位移的均方根误差值最大。随着时变平均风速余弦函数圆周频率γ的增大或初始相位θ的减小,桥面三种位移响应的有效值都变大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Probabilistic Engineering Mechanics
Probabilistic Engineering Mechanics 工程技术-工程:机械
CiteScore
3.80
自引率
15.40%
发文量
98
审稿时长
13.5 months
期刊介绍: This journal provides a forum for scholarly work dealing primarily with probabilistic and statistical approaches to contemporary solid/structural and fluid mechanics problems encountered in diverse technical disciplines such as aerospace, civil, marine, mechanical, and nuclear engineering. The journal aims to maintain a healthy balance between general solution techniques and problem-specific results, encouraging a fruitful exchange of ideas among disparate engineering specialities.
期刊最新文献
Real-time anomaly detection of the stochastically excited systems on spherical (S2) manifold Nonprobabilistic time-dependent reliability analysis for uncertain structures under interval process loads Fractional-order filter approximations for efficient stochastic response determination of wind-excited linear structural systems Seismic reliability analysis using Subset Simulation enhanced with an explorative adaptive conditional sampling algorithm Efficient optimization-based method for simultaneous calibration of load and resistance factors considering multiple target reliability indices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1