{"title":"Parity-Time-Symmetric Wireless Power Transfer System Based on Self-Excited Converter","authors":"Jingjing Yang;Mengling Li;Shumin Ran;Jason Gu","doi":"10.1109/ICJECE.2024.3374951","DOIUrl":null,"url":null,"abstract":"The nonlinear parity-time-symmetric wireless power transfer (PT-WPT) system has garnered significant attention for its robustness against variations in the coupling coefficient. Currently, the implementation of nonlinear negative resistance primarily relies on switch-mode converters. Among these, the conventional PT-WPT system based on self-excited converters faces challenges such as limited output power and overall system efficiency (OSE). In this article, we propose a novel dual-supply self-excited PT-WPT system designed to address these challenges, offering a cost-effective solution. We present the circuit, coupled-mode model, and PT-symmetric condition of the proposed system. Furthermore, stability criteria of the system at each equilibrium point are analyzed using Lyapunov’s first method. Finally, we implement a single-supply system to validate the correctness of the models and stability criteria. In addition, a dual-supply system is constructed, achieving an output power of 101.2 W with OSE of 89.2%.","PeriodicalId":100619,"journal":{"name":"IEEE Canadian Journal of Electrical and Computer Engineering","volume":"47 2","pages":"78-86"},"PeriodicalIF":2.1000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Canadian Journal of Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10494596/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
The nonlinear parity-time-symmetric wireless power transfer (PT-WPT) system has garnered significant attention for its robustness against variations in the coupling coefficient. Currently, the implementation of nonlinear negative resistance primarily relies on switch-mode converters. Among these, the conventional PT-WPT system based on self-excited converters faces challenges such as limited output power and overall system efficiency (OSE). In this article, we propose a novel dual-supply self-excited PT-WPT system designed to address these challenges, offering a cost-effective solution. We present the circuit, coupled-mode model, and PT-symmetric condition of the proposed system. Furthermore, stability criteria of the system at each equilibrium point are analyzed using Lyapunov’s first method. Finally, we implement a single-supply system to validate the correctness of the models and stability criteria. In addition, a dual-supply system is constructed, achieving an output power of 101.2 W with OSE of 89.2%.