A Novel Mechanism of MSCs Responding to Occlusal Force for Bone Homeostasis

IF 5.7 1区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE Journal of Dental Research Pub Date : 2024-04-26 DOI:10.1177/00220345241236120
F. Wang, H. Wang, H. Zhang, B. Sun, Z. Wang
{"title":"A Novel Mechanism of MSCs Responding to Occlusal Force for Bone Homeostasis","authors":"F. Wang, H. Wang, H. Zhang, B. Sun, Z. Wang","doi":"10.1177/00220345241236120","DOIUrl":null,"url":null,"abstract":"Alveolar bone, as tooth-supporting bone for mastication, is sensitive to occlusal force. However, the mechanism of alveolar bone loss after losing occlusal force remains unclear. Here, we performed single-cell RNA sequencing of nonhematopoietic (CD45<jats:sup>–</jats:sup>) cells in mouse alveolar bone after removing the occlusal force. Mesenchymal stromal cells (MSCs) and endothelial cell (EC) subsets were significantly decreased in frequency, as confirmed by immunofluorescence and flow cytometry. The osteogenic and proangiogenic abilities of MSCs were impaired, and the expression of mechanotransducers yes associated protein 1 ( Yap) and WW domain containing transcription regulator 1 ( Taz) in MSCs decreased. Conditional deletion of Yap and Taz from LepR<jats:sup>+</jats:sup> cells, which are enriched in MSCs that are important for adult bone homeostasis, significantly decreased alveolar bone mass and resisted any further changes in bone mass induced by occlusal force changes. Interestingly, LepR-Cre; Yap<jats:sup>f/f</jats:sup>; Taz<jats:sup>f/f</jats:sup> mice showed a decrease in CD31<jats:sup>hi</jats:sup> endomucin (Emcn)<jats:sup>hi</jats:sup> endothelium, and the expression of some EC-derived signals acting on osteoblastic cells was inhibited in alveolar bone. Mechanistically, conditional deletion of Yap and Taz in LepR<jats:sup>+</jats:sup> cells inhibited the secretion of pleiotrophin (Ptn), which impaired the proangiogenic capacity of LepR<jats:sup>+</jats:sup> cells. Knockdown in MSC-derived Ptn repressed human umbilical vein EC tube formation in vitro. More important, administration of recombinant PTN locally recovered the frequency of CD31<jats:sup>hi</jats:sup>Emcn<jats:sup>hi</jats:sup> endothelium and rescued the low bone mass phenotype of LepR-Cre; Yap<jats:sup>f/f</jats:sup>; Taz<jats:sup>f/f</jats:sup> mice. Taken together, these findings suggest that occlusal force governs MSC-regulated endothelium to maintain alveolar bone homeostasis through the Yap/Taz/Ptn axis, providing a reference for further understanding of the relationship between dysfunction and bone homeostasis.","PeriodicalId":15596,"journal":{"name":"Journal of Dental Research","volume":"51 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dental Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/00220345241236120","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

Abstract

Alveolar bone, as tooth-supporting bone for mastication, is sensitive to occlusal force. However, the mechanism of alveolar bone loss after losing occlusal force remains unclear. Here, we performed single-cell RNA sequencing of nonhematopoietic (CD45) cells in mouse alveolar bone after removing the occlusal force. Mesenchymal stromal cells (MSCs) and endothelial cell (EC) subsets were significantly decreased in frequency, as confirmed by immunofluorescence and flow cytometry. The osteogenic and proangiogenic abilities of MSCs were impaired, and the expression of mechanotransducers yes associated protein 1 ( Yap) and WW domain containing transcription regulator 1 ( Taz) in MSCs decreased. Conditional deletion of Yap and Taz from LepR+ cells, which are enriched in MSCs that are important for adult bone homeostasis, significantly decreased alveolar bone mass and resisted any further changes in bone mass induced by occlusal force changes. Interestingly, LepR-Cre; Yapf/f; Tazf/f mice showed a decrease in CD31hi endomucin (Emcn)hi endothelium, and the expression of some EC-derived signals acting on osteoblastic cells was inhibited in alveolar bone. Mechanistically, conditional deletion of Yap and Taz in LepR+ cells inhibited the secretion of pleiotrophin (Ptn), which impaired the proangiogenic capacity of LepR+ cells. Knockdown in MSC-derived Ptn repressed human umbilical vein EC tube formation in vitro. More important, administration of recombinant PTN locally recovered the frequency of CD31hiEmcnhi endothelium and rescued the low bone mass phenotype of LepR-Cre; Yapf/f; Tazf/f mice. Taken together, these findings suggest that occlusal force governs MSC-regulated endothelium to maintain alveolar bone homeostasis through the Yap/Taz/Ptn axis, providing a reference for further understanding of the relationship between dysfunction and bone homeostasis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
间充质干细胞响应咬合力促进骨平衡的新机制
牙槽骨作为咀嚼时的牙齿支撑骨,对咬合力非常敏感。然而,失去咬合力后牙槽骨流失的机制仍不清楚。在此,我们对去除咬合力后小鼠牙槽骨中的非造血细胞(CD45-)进行了单细胞 RNA 测序。免疫荧光和流式细胞术证实,间充质基质细胞(MSCs)和内皮细胞(EC)亚群的频率明显下降。间充质干细胞的成骨和促血管生成能力受损,间充质干细胞中的机械传导相关蛋白1(Yap)和含WW结构域的转录调节因子1(Taz)的表达减少。LepR+细胞中富含对成人骨平衡非常重要的间充质干细胞,有条件地缺失LepR+细胞中的Yap和Taz会显著降低牙槽骨质量,并抑制咬合力变化引起的骨量进一步变化。有趣的是,LepR-Cre; Yapf/f; Tazf/f 小鼠显示出 CD31hi 内皮素(Emcn)hi 内皮细胞的减少,一些作用于成骨细胞的 EC 衍生信号在牙槽骨中的表达受到抑制。从机制上讲,LepR+细胞中Yap和Taz的条件性缺失抑制了褶皱素(Ptn)的分泌,从而削弱了LepR+细胞的促血管生成能力。敲除间充质干细胞衍生的 Ptn 可抑制体外人脐静脉 EC 管的形成。更重要的是,在局部给予重组 PTN 可恢复 CD31hiEmcnhi 内皮的频率,并挽救 LepR-Cre; Yapf/f; Tazf/f 小鼠的低骨量表型。综上所述,这些研究结果表明,咬合力通过Yap/Taz/Ptn轴调控间充质干细胞调节内皮维持牙槽骨稳态,为进一步了解功能障碍与骨稳态之间的关系提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Dental Research
Journal of Dental Research 医学-牙科与口腔外科
CiteScore
15.30
自引率
3.90%
发文量
155
审稿时长
3-8 weeks
期刊介绍: The Journal of Dental Research (JDR) is a peer-reviewed scientific journal committed to sharing new knowledge and information on all sciences related to dentistry and the oral cavity, covering health and disease. With monthly publications, JDR ensures timely communication of the latest research to the oral and dental community.
期刊最新文献
Dasatinib and Quercetin Limit Gingival Senescence, Inflammation, and Bone Loss Metabolic Profiling of Individuals with Missing Teeth and Tooth Loss A Novel Dual Cross-linking Reagent for Dentin Bonding Interface Stability Posteruptive Loss of Proteins in Porcine Enamel Schwann Cell–Secreted S100B Promotes Wound Healing via Paracrine Modulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1