Enhanced interlaminar structure and dynamic mechanical properties of Tectona grandis fiber (TGF)/polypropylene fiber (PPF)/carbon nanotube (CNT) nano composite prepared solid dipping coating process

IF 17.7 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-04-26 DOI:10.1515/polyeng-2024-0001
Alagappan Karthikeyan, Mohan Sekar, Rajendran Selvabharathi
{"title":"Enhanced interlaminar structure and dynamic mechanical properties of Tectona grandis fiber (TGF)/polypropylene fiber (PPF)/carbon nanotube (CNT) nano composite prepared solid dipping coating process","authors":"Alagappan Karthikeyan, Mohan Sekar, Rajendran Selvabharathi","doi":"10.1515/polyeng-2024-0001","DOIUrl":null,"url":null,"abstract":"\n The interlaminar structure and dynamic mechanical properties of Tectona grandis fiber (TGF), polypropylene fiber (PPF), and carbon nanotube (CNT) nano composite were investigated in the current study. In order to improve the mechanical characteristics and microstructure, the present investigations used T. grandis fiber and polypropylene fiber (inorganic–organic) materials mixed with nano composite and epoxy resin. Strong bonding strength and high wear resistance were created by the silane characteristics during the coating process for the outer surface layers. Since CNT nanomaterials were directly reflected onto the outer surface, the microstructure analyses amply demonstrated that hexagonal lattice structure and crystallisation development were detected in the inner surface layer. In order to increase high stiffness and bonding strength, storage modulus and loss modulus values were applied to all composite materials, and the TGF/PPF/CNT composite materials’ hardness value was developed at 112 HV. The tensile strength of TG/PP composite was 46.7 MPa, while that of TGF/PPF/CNT composite was 57.4 MPa. Studies on wear resistance showed unequivocally that the TGF/PPF/CNT composite reduced wear and friction.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"17 8","pages":""},"PeriodicalIF":17.7000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/polyeng-2024-0001","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The interlaminar structure and dynamic mechanical properties of Tectona grandis fiber (TGF), polypropylene fiber (PPF), and carbon nanotube (CNT) nano composite were investigated in the current study. In order to improve the mechanical characteristics and microstructure, the present investigations used T. grandis fiber and polypropylene fiber (inorganic–organic) materials mixed with nano composite and epoxy resin. Strong bonding strength and high wear resistance were created by the silane characteristics during the coating process for the outer surface layers. Since CNT nanomaterials were directly reflected onto the outer surface, the microstructure analyses amply demonstrated that hexagonal lattice structure and crystallisation development were detected in the inner surface layer. In order to increase high stiffness and bonding strength, storage modulus and loss modulus values were applied to all composite materials, and the TGF/PPF/CNT composite materials’ hardness value was developed at 112 HV. The tensile strength of TG/PP composite was 46.7 MPa, while that of TGF/PPF/CNT composite was 57.4 MPa. Studies on wear resistance showed unequivocally that the TGF/PPF/CNT composite reduced wear and friction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
增强固态浸渍涂层工艺制备的大叶桉纤维(TGF)/聚丙烯纤维(PPF)/碳纳米管(CNT)纳米复合材料的层间结构和动态力学性能
本研究调查了柚木纤维(TGF)、聚丙烯纤维(PPF)和碳纳米管(CNT)纳米复合材料的层间结构和动态力学性能。为了改善力学性能和微观结构,本研究使用了无机-有机纳米复合材料与环氧树脂混合的柚木纤维和聚丙烯纤维(无机-有机)材料。在外层表层的涂覆过程中,硅烷的特性使其具有较强的粘合强度和较高的耐磨性。由于 CNT 纳米材料被直接反射到外表面,因此微观结构分析充分表明,内表层检测到了六方晶格结构和结晶发展。为了提高刚度和结合强度,所有复合材料都采用了存储模量和损耗模量值,TGF/PPF/CNT 复合材料的硬度值达到了 112 HV。TG/PP 复合材料的拉伸强度为 46.7 兆帕,而 TGF/PPF/CNT 复合材料的拉伸强度为 57.4 兆帕。耐磨性研究明确表明,TGF/PPF/CNT 复合材料可减少磨损和摩擦。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Programmable Aptamer-Controlled Fibrinogenesis Using Dynamic DNA Networks and Synthetic Transcription Machineries Chalcogenoviologen-Based Surface and Interface Chemistry for Optoelectronic Applications: From Molecular Design to Functional Devices. Issue Publication Information Issue Editorial Masthead Regulating Lanthanide Single-Molecule Magnets with Coordination Geometry and Organometallic Chemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1