{"title":"An ontology-driven model for hospital equipment maintenance management: a case study","authors":"Mawloud Titah, Mohammed Abdelghani Bouchaala","doi":"10.1108/jqme-10-2023-0097","DOIUrl":null,"url":null,"abstract":"Purpose This paper aims to establish an efficient maintenance management system tailored for healthcare facilities, recognizing the crucial role of medical equipment in providing timely and precise patient care.Design/methodology/approach The system is designed to function both as an information portal and a decision-support system. A knowledge-based approach is adopted centered on Semantic Web Technologies (SWTs), leveraging a customized ontology model for healthcare facilities’ knowledge capitalization. Semantic Web Rule Language (SWRL) is integrated to address decision-support aspects, including equipment criticality assessment, maintenance strategies selection and contracting policies assignment. Additionally, Semantic Query-enhanced Web Rule Language (SQWRL) is incorporated to streamline the retrieval of decision-support outcomes and other useful information from the system’s knowledge base. A real-life case study conducted at the University Hospital Center of Oran (Algeria) illustrates the applicability and effectiveness of the proposed approach.Findings Case study results reveal that 40% of processed equipment is highly critical, 40% is of medium criticality, and 20% is of negligible criticality. The system demonstrates significant efficacy in determining optimal maintenance strategies and contracting policies for the equipment, leveraging combined knowledge and data-driven inference. Overall, SWTs showcases substantial potential in addressing maintenance management challenges within healthcare facilities.Originality/value An innovative model for healthcare equipment maintenance management is introduced, incorporating ontology, SWRL and SQWRL, and providing efficient data integration, coordinated workflows and data-driven context-aware decisions, while maintaining optimal flexibility and cross-departmental interoperability, which gives it substantial potential for further development.","PeriodicalId":16938,"journal":{"name":"Journal of Quality in Maintenance Engineering","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quality in Maintenance Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/jqme-10-2023-0097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose This paper aims to establish an efficient maintenance management system tailored for healthcare facilities, recognizing the crucial role of medical equipment in providing timely and precise patient care.Design/methodology/approach The system is designed to function both as an information portal and a decision-support system. A knowledge-based approach is adopted centered on Semantic Web Technologies (SWTs), leveraging a customized ontology model for healthcare facilities’ knowledge capitalization. Semantic Web Rule Language (SWRL) is integrated to address decision-support aspects, including equipment criticality assessment, maintenance strategies selection and contracting policies assignment. Additionally, Semantic Query-enhanced Web Rule Language (SQWRL) is incorporated to streamline the retrieval of decision-support outcomes and other useful information from the system’s knowledge base. A real-life case study conducted at the University Hospital Center of Oran (Algeria) illustrates the applicability and effectiveness of the proposed approach.Findings Case study results reveal that 40% of processed equipment is highly critical, 40% is of medium criticality, and 20% is of negligible criticality. The system demonstrates significant efficacy in determining optimal maintenance strategies and contracting policies for the equipment, leveraging combined knowledge and data-driven inference. Overall, SWTs showcases substantial potential in addressing maintenance management challenges within healthcare facilities.Originality/value An innovative model for healthcare equipment maintenance management is introduced, incorporating ontology, SWRL and SQWRL, and providing efficient data integration, coordinated workflows and data-driven context-aware decisions, while maintaining optimal flexibility and cross-departmental interoperability, which gives it substantial potential for further development.
期刊介绍:
This exciting journal looks at maintenance engineering from a positive standpoint, and clarifies its recently elevatedstatus as a highly technical, scientific, and complex field. Typical areas examined include: ■Budget and control ■Equipment management ■Maintenance information systems ■Process capability and maintenance ■Process monitoring techniques ■Reliability-based maintenance ■Replacement and life cycle costs ■TQM and maintenance