Unraveling the molecular dynamics of Pseudomonas aeruginosa biofilms at the air-liquid interface.

IF 4.7 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-04-25 DOI:10.2217/fmb-2023-0234
K. Sung, Miseon Park, Jung-Hwa Chon, Ohgew Kweon, Saeed Khan
{"title":"Unraveling the molecular dynamics of Pseudomonas aeruginosa biofilms at the air-liquid interface.","authors":"K. Sung, Miseon Park, Jung-Hwa Chon, Ohgew Kweon, Saeed Khan","doi":"10.2217/fmb-2023-0234","DOIUrl":null,"url":null,"abstract":"Aim: The aim of this study was to probe the dynamics of Pseudomonas aeruginosa PA14 air-liquid interface (ALI) biofilms over time through global proteomic analysis. Materials & methods: P. aeruginosa PA14 ALI biofilm samples, collected over 48-144 h, underwent differential expression analysis to identify varying proteins at each time point. Results: A consistent set of 778 proteins was identified, with variable expression over time. Upregulated proteins were mainly linked to 'amino acid transport and metabolism'. Biofilm-related pathways, including cAMP/Vfr and QS, underwent significant changes. Flagella were more influential than pili, especially in early biofilm development. Proteins associated with virulence, transporters and iron showed differential expression throughout. Conclusion: The findings enhance our understanding of ALI biofilm development.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"3 8","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2217/fmb-2023-0234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Aim: The aim of this study was to probe the dynamics of Pseudomonas aeruginosa PA14 air-liquid interface (ALI) biofilms over time through global proteomic analysis. Materials & methods: P. aeruginosa PA14 ALI biofilm samples, collected over 48-144 h, underwent differential expression analysis to identify varying proteins at each time point. Results: A consistent set of 778 proteins was identified, with variable expression over time. Upregulated proteins were mainly linked to 'amino acid transport and metabolism'. Biofilm-related pathways, including cAMP/Vfr and QS, underwent significant changes. Flagella were more influential than pili, especially in early biofilm development. Proteins associated with virulence, transporters and iron showed differential expression throughout. Conclusion: The findings enhance our understanding of ALI biofilm development.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
揭示气液界面铜绿假单胞菌生物膜的分子动力学。
目的:本研究旨在通过全局蛋白质组分析探究铜绿假单胞菌 PA14 气液界面(ALI)生物膜随时间变化的动态。材料与方法:收集铜绿假单胞菌 PA14 ALI 生物膜样本 48-144 小时,进行差异表达分析,以确定每个时间点的不同蛋白质。结果确定了一组一致的 778 种蛋白质,其表达随时间变化。上调的蛋白质主要与 "氨基酸转运和代谢 "有关。与生物膜相关的途径,包括 cAMP/Vfr 和 QS,都发生了显著变化。鞭毛比纤毛虫更有影响力,尤其是在生物膜发展的早期。与毒力、转运体和铁有关的蛋白质在整个过程中都有不同的表达。结论这些发现加深了我们对 ALI 生物膜发展的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊介绍: ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.
期刊最新文献
Correction to "Nucleic Acid FRET Sensing of Hydrogen Peroxide in Live Cells Using a Boronic Acid Nucleobase Surrogate". Aptamer-Functionalized Silica Particles for FRET-Based Fluorescence Switching. Direct Integration of Ionic Liquid Gel Sensors onto Microfibrous Face Mask Substrates for Wearable Respiratory Health Monitoring. Agitation-Driven Fusion Fabrication of Macroscopic Cell-Laden Cryogels. Issue Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1