{"title":"Experimental Investigation of Phase Equilibria in the Ti-Cr-V System at 1000–1200 °C","authors":"Shiyu Fu, Jing-jing Wang, Xiao-Gang Lu","doi":"10.3390/met14050498","DOIUrl":null,"url":null,"abstract":"Ti-Cr-V-based alloys have been utilized across various domains, including aerospace structural and functional materials and hydrogen storage materials. Investigating the phase relations in the Ti-Cr-V system is significant in supporting the material design for these applications. In the present work, the isothermal sections at 1000, 1100, and 1200 °C for the Ti-Cr-V system were precisely determined through a systematic investigation using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD). The phase region of Cr2Ti was entirely elucidated for the first time. As the temperature decreased from 1200 to 1000 °C, the V solubility range of Cr2Ti increased from 5.3 wt.% to 10.0 wt.%, while the Ti solubility range essentially remained constant at approximately 31.0–33.9 wt.%. In addition, it was suggested that the stable structure of Cr2Ti was C36 at 1200 °C and C15 at 1000 and 1100 °C. The present work will support thermodynamic re-assessment research.","PeriodicalId":510812,"journal":{"name":"Metals","volume":"90 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/met14050498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Ti-Cr-V-based alloys have been utilized across various domains, including aerospace structural and functional materials and hydrogen storage materials. Investigating the phase relations in the Ti-Cr-V system is significant in supporting the material design for these applications. In the present work, the isothermal sections at 1000, 1100, and 1200 °C for the Ti-Cr-V system were precisely determined through a systematic investigation using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD). The phase region of Cr2Ti was entirely elucidated for the first time. As the temperature decreased from 1200 to 1000 °C, the V solubility range of Cr2Ti increased from 5.3 wt.% to 10.0 wt.%, while the Ti solubility range essentially remained constant at approximately 31.0–33.9 wt.%. In addition, it was suggested that the stable structure of Cr2Ti was C36 at 1200 °C and C15 at 1000 and 1100 °C. The present work will support thermodynamic re-assessment research.