Thermal analysis with high accuracy of multi-beam mask fabrication

Yanjun Zhang, Kaijun Dong, Zhuming Liu, Delong Chen
{"title":"Thermal analysis with high accuracy of multi-beam mask fabrication","authors":"Yanjun Zhang, Kaijun Dong, Zhuming Liu, Delong Chen","doi":"10.1116/6.0003477","DOIUrl":null,"url":null,"abstract":"For a 7 nm technology node and beyond, multi-beam mask fabrication based on charged particles has attracted attention widely and shows great advantages in terms of throughput. However, the heating effect during mask writing is a serious problem and makes deformation error. To address this issue, an accurate analysis of heating with multi-beam writing is necessary. In this study, the thermal effects of electron beams on a mask during writing time (exposure time and nonexposure time) were simulated with a finite element numerical method. The variation in the temperature field with two writing paths (S-shaped and E-shaped) was analyzed. A comparative analysis of the mask’s deformation under different writing paths was conducted. Numerical research shows that the thermal analysis method in this study provides a guide for optimizing the process parameters of mask fabrication.","PeriodicalId":282302,"journal":{"name":"Journal of Vacuum Science & Technology B","volume":"57 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vacuum Science & Technology B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/6.0003477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For a 7 nm technology node and beyond, multi-beam mask fabrication based on charged particles has attracted attention widely and shows great advantages in terms of throughput. However, the heating effect during mask writing is a serious problem and makes deformation error. To address this issue, an accurate analysis of heating with multi-beam writing is necessary. In this study, the thermal effects of electron beams on a mask during writing time (exposure time and nonexposure time) were simulated with a finite element numerical method. The variation in the temperature field with two writing paths (S-shaped and E-shaped) was analyzed. A comparative analysis of the mask’s deformation under different writing paths was conducted. Numerical research shows that the thermal analysis method in this study provides a guide for optimizing the process parameters of mask fabrication.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高精度多光束掩模制造热分析
对于 7 纳米及更高的技术节点,基于带电粒子的多光束掩膜制造已引起广泛关注,并在产量方面显示出巨大优势。然而,掩膜写入过程中的加热效应是一个严重问题,会导致变形误差。为解决这一问题,有必要对多光束写入时的加热进行精确分析。本研究采用有限元数值方法模拟了光罩在写入过程中(曝光时间和非曝光时间)的电子束热效应。分析了两种写入路径(S 形和 E 形)的温度场变化。对不同书写路径下的掩膜变形进行了比较分析。数值研究表明,本研究中的热分析方法为优化掩膜制造工艺参数提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Carbon nanotube collimator as an vacuum ultraviolet window Comparative study on variable axis lens systems based on tapered deflectors Transferable GeSn ribbon photodetectors for high-speed short-wave infrared photonic applications Upgrading of the modified Knudsen equation and its verification for calculating the gas flow rate through cylindrical tubes Comparison of GeSn alloy films prepared by ion implantation and remote plasma-enhanced chemical vapor deposition methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1