Douglas Talbert, Katherine L. Phillips, Katherine E. Brown, Steve Talbert
{"title":"Assessing and Addressing Model Trustworthiness Trade-offs in Trauma Triage","authors":"Douglas Talbert, Katherine L. Phillips, Katherine E. Brown, Steve Talbert","doi":"10.1142/s0218213024600078","DOIUrl":null,"url":null,"abstract":"Trauma triage occurs in suboptimal environments for making consequential decisions. Published triage studies demonstrate the extremes of the complexity/accuracy trade-off, either studying simple models with poor accuracy or very complex models with accuracies nearing published goals. Using a Level I Trauma Center’s registry cases (n = 50 644), this study describes, uses, and derives observations from a methodology to more thoroughly examine this trade-off. This or similar methods can provide the insight needed for practitioners to balance understandability with accuracy. Additionally, this study incorporates an evaluation of group-based fairness into this trade-off analysis to provide an additional dimension of insight into model selection. Lastly, this paper proposes and analyzes a multi-model approach to mitigating trust-related trade-offs. The experiments allow us to draw several conclusions regarding the machine learning models in the domain of trauma triage and demonstrate the value of our trade-off analysis to provide insight into choices regarding model complexity, model accuracy, and model fairness.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"48 19","pages":""},"PeriodicalIF":17.7000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/s0218213024600078","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Trauma triage occurs in suboptimal environments for making consequential decisions. Published triage studies demonstrate the extremes of the complexity/accuracy trade-off, either studying simple models with poor accuracy or very complex models with accuracies nearing published goals. Using a Level I Trauma Center’s registry cases (n = 50 644), this study describes, uses, and derives observations from a methodology to more thoroughly examine this trade-off. This or similar methods can provide the insight needed for practitioners to balance understandability with accuracy. Additionally, this study incorporates an evaluation of group-based fairness into this trade-off analysis to provide an additional dimension of insight into model selection. Lastly, this paper proposes and analyzes a multi-model approach to mitigating trust-related trade-offs. The experiments allow us to draw several conclusions regarding the machine learning models in the domain of trauma triage and demonstrate the value of our trade-off analysis to provide insight into choices regarding model complexity, model accuracy, and model fairness.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.