Short large-amplitude magnetic structures (SLAMS) at Mercury observed by MESSENGER

IF 1.7 4区 地球科学 Q3 ASTRONOMY & ASTROPHYSICS Annales Geophysicae Pub Date : 2024-04-25 DOI:10.5194/angeo-42-117-2024
T. Karlsson, F. Plaschke, A. Glass, J. Raines
{"title":"Short large-amplitude magnetic structures (SLAMS) at Mercury observed by MESSENGER","authors":"T. Karlsson, F. Plaschke, A. Glass, J. Raines","doi":"10.5194/angeo-42-117-2024","DOIUrl":null,"url":null,"abstract":"Abstract. We present the first observations of short large-amplitude magnetic structures (denoted SLAMS) at Mercury. We have investigated approximately 4 years of MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) data to identify SLAMS in the Mercury foreshock. Defining SLAMS as magnetic field compressional structures, with an increase in magnetic field strength of at least twice the background magnetic field strength, when MESSENGER is located in the solar wind, we find 435 SLAMS. The SLAMS are found either in regions of a general ultra-low frequency (ULF) wave field, at the boundary of such a ULF wave field, or in a few cases isolated from the wave field. We present statistics on several properties of the SLAMS, such as temporal scale size, amplitude, and the presence of whistler-like wave emissions. We find that SLAMS are mostly found during periods of low interplanetary magnetic field strength, indicating that they are more common for higher solar wind Alfvénic Mach number (MA). We use the Tao solar wind model to estimate solar wind parameters to verify that MA is indeed larger during SLAMS observations than otherwise. Finally, we also investigate how SLAMS observations are related to foreshock geometry.\n","PeriodicalId":50777,"journal":{"name":"Annales Geophysicae","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Geophysicae","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/angeo-42-117-2024","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. We present the first observations of short large-amplitude magnetic structures (denoted SLAMS) at Mercury. We have investigated approximately 4 years of MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) data to identify SLAMS in the Mercury foreshock. Defining SLAMS as magnetic field compressional structures, with an increase in magnetic field strength of at least twice the background magnetic field strength, when MESSENGER is located in the solar wind, we find 435 SLAMS. The SLAMS are found either in regions of a general ultra-low frequency (ULF) wave field, at the boundary of such a ULF wave field, or in a few cases isolated from the wave field. We present statistics on several properties of the SLAMS, such as temporal scale size, amplitude, and the presence of whistler-like wave emissions. We find that SLAMS are mostly found during periods of low interplanetary magnetic field strength, indicating that they are more common for higher solar wind Alfvénic Mach number (MA). We use the Tao solar wind model to estimate solar wind parameters to verify that MA is indeed larger during SLAMS observations than otherwise. Finally, we also investigate how SLAMS observations are related to foreshock geometry.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MESSENGER 在水星观测到的短大振幅磁结构 (SLAMS)
摘要。我们首次观测到水星的短大振幅磁结构(SLAMS)。我们调查了大约4年的MESSENGER(水星表面、空间环境、地球化学和测距)数据,以确定水星前震中的SLAMS。将SLAMS定义为磁场压缩结构,当MESSENGER位于太阳风中时,磁场强度增加至少为背景磁场强度的两倍,我们发现了435个SLAMS。这些 SLAMS 要么出现在一般超低频(ULF)波场的区域,要么出现在这种超低频波场的边界,要么出现在与波场隔离的少数情况下。我们对 SLAMS 的几个特性进行了统计,如时间尺度大小、振幅以及是否存在类似于哨兵的波发射。我们发现,SLAMS 大多出现在行星际磁场强度较低的时期,这表明它们在太阳风阿尔费尼科马赫数(MA)较高时更为常见。我们利用陶太阳风模型来估算太阳风参数,以验证SLAMS观测期间的太阳风马赫数确实比其他时候要大。最后,我们还研究了SLAMS观测与前震几何的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annales Geophysicae
Annales Geophysicae 地学-地球科学综合
CiteScore
4.30
自引率
0.00%
发文量
42
审稿时长
2 months
期刊介绍: Annales Geophysicae (ANGEO) is a not-for-profit international multi- and inter-disciplinary scientific open-access journal in the field of solar–terrestrial and planetary sciences. ANGEO publishes original articles and short communications (letters) on research of the Sun–Earth system, including the science of space weather, solar–terrestrial plasma physics, the Earth''s ionosphere and atmosphere, the magnetosphere, and the study of planets and planetary systems, the interaction between the different spheres of a planet, and the interaction across the planetary system. Topics range from space weathering, planetary magnetic field, and planetary interior and surface dynamics to the formation and evolution of planetary systems.
期刊最新文献
Ionospheric upwelling and the level of associated noise at solar minimum Sensitivity analysis of a Martian atmospheric column model with data from the Mars Science Laboratory Low-frequency solar radio type II bursts and their association with space weather events during the ascending phase of solar cycle 25 The investigation of June 21 and 25, 2015 CMEs using EUHFORIA Observations of ionospheric disturbances associated with the 2020 Beirut explosion by Defense Meteorological Satellite Program and ground-based ionosondes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1