{"title":"Stochastic Equilibrium Analysis to Optimize Solid Propellant Combustion Gas Composition","authors":"Quentin Michalski, Adrian Pudsey","doi":"10.2514/1.b39318","DOIUrl":null,"url":null,"abstract":"Solid fuel ducted rockets operate with two-stage combustion. The first stage generates burnt products from the combustion of a fuel-rich solid propellant. In the second stage, those combustion products react with air and are ejected through a nozzle to produce thrust. The combustion efficiency of such a device strongly influences its performance and depends on the composition of the rich-fuel-burnt pyrolysis products. This study investigates the sensitivity of carbon, hydrogen, oxygen, and nitrogen (CHON) solid fuels’ burnt product composition to the fuel properties, composition, and heat of formation. The calculations are performed assuming adiabatic, isobaric chemical equilibrium on synthetic species. Existing species’ properties constrain the properties of the synthetic species. The trends of formation of the main species observed in gas generators, i.e., [Formula: see text], [Formula: see text], CO, [Formula: see text], [Formula: see text], [Formula: see text], and solid carbon, are presented. The sensitivity of the molar concentration ratio [Formula: see text] of [Formula: see text] to [Formula: see text] to the oxygen balance and propulsive properties is compared with an example of gas generator propellants. Recommendations for the possible optimization of fuel composition are formulated. For blends of the existing CHON species reported in the literature, it is shown that improving [Formula: see text] is only possible by degrading the specific impulse.","PeriodicalId":16903,"journal":{"name":"Journal of Propulsion and Power","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Propulsion and Power","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2514/1.b39318","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
Solid fuel ducted rockets operate with two-stage combustion. The first stage generates burnt products from the combustion of a fuel-rich solid propellant. In the second stage, those combustion products react with air and are ejected through a nozzle to produce thrust. The combustion efficiency of such a device strongly influences its performance and depends on the composition of the rich-fuel-burnt pyrolysis products. This study investigates the sensitivity of carbon, hydrogen, oxygen, and nitrogen (CHON) solid fuels’ burnt product composition to the fuel properties, composition, and heat of formation. The calculations are performed assuming adiabatic, isobaric chemical equilibrium on synthetic species. Existing species’ properties constrain the properties of the synthetic species. The trends of formation of the main species observed in gas generators, i.e., [Formula: see text], [Formula: see text], CO, [Formula: see text], [Formula: see text], [Formula: see text], and solid carbon, are presented. The sensitivity of the molar concentration ratio [Formula: see text] of [Formula: see text] to [Formula: see text] to the oxygen balance and propulsive properties is compared with an example of gas generator propellants. Recommendations for the possible optimization of fuel composition are formulated. For blends of the existing CHON species reported in the literature, it is shown that improving [Formula: see text] is only possible by degrading the specific impulse.
期刊介绍:
This Journal is devoted to the advancement of the science and technology of aerospace propulsion and power through the dissemination of original archival papers contributing to advancements in airbreathing, electric, and advanced propulsion; solid and liquid rockets; fuels and propellants; power generation and conversion for aerospace vehicles; and the application of aerospace science and technology to terrestrial energy devices and systems. It is intended to provide readers of the Journal, with primary interests in propulsion and power, access to papers spanning the range from research through development to applications. Papers in these disciplines and the sciences of combustion, fluid mechanics, and solid mechanics as directly related to propulsion and power are solicited.