Bayesian optimization for stable properties amid processing fluctuations in sputter deposition

Ankit Shrivastava, M. Kalaswad, Joyce O. Custer, David P. Adams, H. Najm
{"title":"Bayesian optimization for stable properties amid processing fluctuations in sputter deposition","authors":"Ankit Shrivastava, M. Kalaswad, Joyce O. Custer, David P. Adams, H. Najm","doi":"10.1116/6.0003418","DOIUrl":null,"url":null,"abstract":"We introduce a Bayesian optimization approach to guide the sputter deposition of molybdenum thin films, aiming to achieve desired residual stress and sheet resistance while minimizing susceptibility to stochastic fluctuations during deposition. Thin films are pivotal in numerous technologies, including semiconductors and optical devices, where their properties are critical. Sputter deposition parameters, such as deposition power, vacuum chamber pressure, and working distance, influence physical properties like residual stress and resistance. Excessive stress and high resistance can impair device performance, necessitating the selection of optimal process parameters. Furthermore, these parameters should ensure the consistency and reliability of thin film properties, assisting in the reproducibility of the devices. However, exploring the multidimensional design space for process optimization is expensive. Bayesian optimization is ideal for optimizing inputs/parameters of general black-box functions without reliance on gradient information. We utilize Bayesian optimization to optimize deposition power and pressure using a custom-built objective function incorporating observed stress and resistance data. Additionally, we integrate prior knowledge of stress variation with pressure into the objective function to prioritize films least affected by stochastic variations. Our findings demonstrate that Bayesian optimization effectively explores the design space and identifies optimal parameter combinations meeting desired stress and resistance specifications.","PeriodicalId":170900,"journal":{"name":"Journal of Vacuum Science & Technology A","volume":"15 20","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vacuum Science & Technology A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/6.0003418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a Bayesian optimization approach to guide the sputter deposition of molybdenum thin films, aiming to achieve desired residual stress and sheet resistance while minimizing susceptibility to stochastic fluctuations during deposition. Thin films are pivotal in numerous technologies, including semiconductors and optical devices, where their properties are critical. Sputter deposition parameters, such as deposition power, vacuum chamber pressure, and working distance, influence physical properties like residual stress and resistance. Excessive stress and high resistance can impair device performance, necessitating the selection of optimal process parameters. Furthermore, these parameters should ensure the consistency and reliability of thin film properties, assisting in the reproducibility of the devices. However, exploring the multidimensional design space for process optimization is expensive. Bayesian optimization is ideal for optimizing inputs/parameters of general black-box functions without reliance on gradient information. We utilize Bayesian optimization to optimize deposition power and pressure using a custom-built objective function incorporating observed stress and resistance data. Additionally, we integrate prior knowledge of stress variation with pressure into the objective function to prioritize films least affected by stochastic variations. Our findings demonstrate that Bayesian optimization effectively explores the design space and identifies optimal parameter combinations meeting desired stress and resistance specifications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在溅射沉积的加工波动中进行贝叶斯优化以获得稳定特性
我们介绍了一种贝叶斯优化方法来指导钼薄膜的溅射沉积,旨在获得理想的残余应力和薄层电阻,同时最大限度地降低沉积过程中随机波动的影响。薄膜在半导体和光学设备等众多技术中起着关键作用,其特性至关重要。溅射沉积参数(如沉积功率、真空室压力和工作距离)会影响残余应力和电阻等物理特性。应力过大和电阻过高会损害设备性能,因此必须选择最佳工艺参数。此外,这些参数还应确保薄膜特性的一致性和可靠性,从而帮助实现设备的可重复性。然而,探索工艺优化的多维设计空间成本高昂。贝叶斯优化法是优化一般黑盒函数输入/参数的理想方法,无需依赖梯度信息。我们利用贝叶斯优化技术,结合观察到的应力和阻力数据,使用定制的目标函数来优化沉积功率和压力。此外,我们还将应力随压力变化的先验知识整合到目标函数中,以优先考虑受随机变化影响最小的薄膜。我们的研究结果表明,贝叶斯优化法能有效地探索设计空间,并确定符合所需应力和电阻规格的最佳参数组合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Measurements of atomic hydrogen recombination coefficients and the reduction of Al2O3 using a heat flux sensor Extension of ion-neutral reactive collision model DNT+ to polar molecules based on average dipole orientation theory Molecular beam epitaxy of Pd-Fe graded alloy films for standing spin waves control Revealing the controlling mechanisms of atomic layer etching for high-k dielectrics in conventional inductively coupled plasma etching tool Introduction to reproducible laboratory hard x-ray photoelectron spectroscopy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1