Mass spectrometry-based pseudotargeted metabolomics reveals metabolic variations in a2-induced gastric cancer cell.

IF 1.1 4区 化学 Q4 PHYSICS, ATOMIC, MOLECULAR & CHEMICAL European Journal of Mass Spectrometry Pub Date : 2024-04-24 DOI:10.1177/14690667241248444
Juan Li, Ying Liu, Piao Zhou, Qiqi Fan, Hong-Min Liu
{"title":"Mass spectrometry-based pseudotargeted metabolomics reveals metabolic variations in a2-induced gastric cancer cell.","authors":"Juan Li, Ying Liu, Piao Zhou, Qiqi Fan, Hong-Min Liu","doi":"10.1177/14690667241248444","DOIUrl":null,"url":null,"abstract":"Gastric cancer (GC) is one of the most malignant tumors with high morbidity and mortality in the world. Compound a2, a Jiyuan oridonin derivative, exhibited excellent anti-proliferative activity against GC cells. To investigate the gastric cellular response to a2 therapy as a novel drug candidate, we adopted a pseudotargeted metabolomics method to explore metabolic variation in a2-induced MGC-803 gastric cells using liquid chromatography tandem mass spectrometry combined with multivariate statistical analysis. The results showed that a2 treatment induced significant metabolic changes in the levels of aminoacyl-tRNA biosynthesis, alanine, aspartate and glutamate metabolism, pyrimidine metabolism, and tricarboxylic acid cycle, approximately 80% of the metabolites were down-regulated in the low-dose and high-dose groups including aspartate, tryptophan, sedoheptulose 7-phosphate, succinate, 2'-deoxyadenosine, uridine, cytidine, etc. which can provide evidence for a new therapy of GC.","PeriodicalId":12007,"journal":{"name":"European Journal of Mass Spectrometry","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/14690667241248444","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Gastric cancer (GC) is one of the most malignant tumors with high morbidity and mortality in the world. Compound a2, a Jiyuan oridonin derivative, exhibited excellent anti-proliferative activity against GC cells. To investigate the gastric cellular response to a2 therapy as a novel drug candidate, we adopted a pseudotargeted metabolomics method to explore metabolic variation in a2-induced MGC-803 gastric cells using liquid chromatography tandem mass spectrometry combined with multivariate statistical analysis. The results showed that a2 treatment induced significant metabolic changes in the levels of aminoacyl-tRNA biosynthesis, alanine, aspartate and glutamate metabolism, pyrimidine metabolism, and tricarboxylic acid cycle, approximately 80% of the metabolites were down-regulated in the low-dose and high-dose groups including aspartate, tryptophan, sedoheptulose 7-phosphate, succinate, 2'-deoxyadenosine, uridine, cytidine, etc. which can provide evidence for a new therapy of GC.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于质谱的伪靶向代谢组学揭示了 a2 诱导的胃癌细胞中的代谢变异。
胃癌是世界上发病率和死亡率最高的恶性肿瘤之一。济源奥利多宁衍生物化合物 a2 对胃癌细胞具有卓越的抗增殖活性。为了研究胃细胞对作为新型候选药物的 a2 治疗的反应,我们采用了一种伪靶向代谢组学方法,利用液相色谱串联质谱结合多元统计分析,探讨了 a2 诱导的 MGC-803 胃细胞的代谢变异。结果表明,a2治疗可诱导氨基酸酰-tRNA生物合成、丙氨酸、天冬氨酸和谷氨酸代谢、嘧啶代谢、三羧酸循环等水平发生显著的代谢变化,低剂量组和高剂量组约80%的代谢物下调,包括天冬氨酸、色氨酸、7-磷酸色酮糖、琥珀酸、2'-脱氧腺苷、尿苷、胞苷等。这为 GC 的新疗法提供了证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.40
自引率
7.70%
发文量
16
审稿时长
>12 weeks
期刊介绍: JMS - European Journal of Mass Spectrometry, is a peer-reviewed journal, devoted to the publication of innovative research in mass spectrometry. Articles in the journal come from proteomics, metabolomics, petroleomics and other areas developing under the umbrella of the “omic revolution”.
期刊最新文献
Exploring the versatility of mass spectrometry: Applications across diverse scientific disciplines. Analysis of dimer and trimer complexes of the non-amyloidogenic rat islet amyloid polypeptide 21-37 by electrospray ionization-tandem mass spectrometry. Clustering of biphenyl oxamide ions by chiral recognition. Concept and simulation of a novel dual-layer linear ion trap mass analyzer for micro-electromechanical systems mass spectrometry. Stereoscopic imaging of volatile organic compounds distribution in the region and tracing emission sources of volatile organic compounds using a novel movable single-photon ionization time-of-flight mass spectrometer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1