Self-Heating and Fatigue Assessment of Laser Powder Bed Fusion NiTi Alloy with High Cycle Fatigue Mechanisms Identification

Metals Pub Date : 2024-04-24 DOI:10.3390/met14050496
Timothée Cullaz, L. Saint-Sulpice, Mohammad Elahinia, S. Arbab Chirani
{"title":"Self-Heating and Fatigue Assessment of Laser Powder Bed Fusion NiTi Alloy with High Cycle Fatigue Mechanisms Identification","authors":"Timothée Cullaz, L. Saint-Sulpice, Mohammad Elahinia, S. Arbab Chirani","doi":"10.3390/met14050496","DOIUrl":null,"url":null,"abstract":"Rapid methods for assessing the fatigue properties of materials have been developed, among which the self-heating method stands out as particularly promising. This approach analyzes the thermal signal of the specimen when subjected to cyclic loading. In this research, the self-heating method was utilized for the first time with laser powder bed fusion (LPBF) of NiTi alloys, examining two specific loading conditions: loading ratios of 0.1 and 10. A thorough examination of the material self-heating behavior was conducted. For comparative purposes, conventional fatigue tests were also conducted, alongside interrupted fatigue tests designed to highlight the underlying mechanisms involved in high cycle fatigue and potentially self-heating behavior. The investigation revealed several key mechanisms at play, including intra-grain misorientation, the emergence and growth of persistent slip bands, and the formation of stress-induced martensite. These findings not only deepen our understanding of the fatigue behavior of LPBF NiTi alloys but also highlight the self-heating method potential as a tool for studying material fatigue.","PeriodicalId":510812,"journal":{"name":"Metals","volume":"24 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/met14050496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Rapid methods for assessing the fatigue properties of materials have been developed, among which the self-heating method stands out as particularly promising. This approach analyzes the thermal signal of the specimen when subjected to cyclic loading. In this research, the self-heating method was utilized for the first time with laser powder bed fusion (LPBF) of NiTi alloys, examining two specific loading conditions: loading ratios of 0.1 and 10. A thorough examination of the material self-heating behavior was conducted. For comparative purposes, conventional fatigue tests were also conducted, alongside interrupted fatigue tests designed to highlight the underlying mechanisms involved in high cycle fatigue and potentially self-heating behavior. The investigation revealed several key mechanisms at play, including intra-grain misorientation, the emergence and growth of persistent slip bands, and the formation of stress-induced martensite. These findings not only deepen our understanding of the fatigue behavior of LPBF NiTi alloys but also highlight the self-heating method potential as a tool for studying material fatigue.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
激光粉末床熔融镍钛合金的自加热和疲劳评估及高循环疲劳机理鉴定
目前已开发出评估材料疲劳特性的快速方法,其中尤以自加热法最有前途。这种方法分析的是试样在承受循环载荷时的热信号。在这项研究中,首次在镍钛合金的激光粉末床熔融(LPBF)中使用了自加热方法,研究了两种特定的加载条件:0.1 和 10 的加载比。对材料的自加热行为进行了全面检查。为了进行比较,还进行了传统的疲劳试验以及间断疲劳试验,目的是突出高循环疲劳和潜在自热行为所涉及的基本机制。调查揭示了几种关键的作用机制,包括晶粒内错位、持续滑移带的出现和增长以及应力诱导马氏体的形成。这些发现不仅加深了我们对 LPBF NiTi 合金疲劳行为的理解,而且凸显了自加热方法作为材料疲劳研究工具的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Obtention of Suitable Pregnant Leach Solution (PLS) for Copper Solvent Extraction Plants from Copper Concentrate Using Hydrogen Peroxide and Iodine in a Sulfuric Acid–Chloride Medium Influence of CAD/CAM Manufacturing Technique and Implant Abutment Angulation on Loosening of Individual Screw-Retained Implant Crowns A Study on the Optimal Powder Metallurgy Process to Obtain Suitable Material Properties of Soft Magnetic Composite Materials for Electric Vehicles Die Casting of Lightweight Thin Fin Heat Sink Using Al-25%Si Advanced FEM Insights into Pressure-Assisted Warm Single-Point Incremental Forming of Ti-6Al-4V Titanium Alloy Sheet Metal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1