Fanomezana M. Ranaivoson , Rieke Bande , Isabell Cardaun , Antonio De Riso , Annette Gärtner , Pui Loke , Christina Reinisch , Prasuna Vogirala , Edward Beaumont , J. L. Smith (Editor)
{"title":"Crystal structure of human peptidylarginine deiminase type VI (PAD6) provides insights into its inactivity","authors":"Fanomezana M. Ranaivoson , Rieke Bande , Isabell Cardaun , Antonio De Riso , Annette Gärtner , Pui Loke , Christina Reinisch , Prasuna Vogirala , Edward Beaumont , J. L. Smith (Editor)","doi":"10.1107/S2052252524002549","DOIUrl":null,"url":null,"abstract":"<div><p>The human peptidylarginine deiminase type VI (PAD6) is essential in oocyte and embryonic development as a component of the supramolecular assemblies called cytoplasmic lattices. The crystal structure presented here suggests PAD6 assembles as a dimer resembling other PADs, albeit with compromised abilities to bind Ca<sup>2+</sup> and substrates. This aligns with existing <em>in vitro</em> data which indicate an enzymatically inactive isoform of PAD.</p></div><div><p>Human peptidylarginine deiminase isoform VI (PAD6), which is predominantly limited to cytoplasmic lattices in the mammalian oocytes in ovarian tissue, is essential for female fertility. It belongs to the peptidylarginine deiminase (PAD) enzyme family that catalyzes the conversion of arginine residues to citrulline in proteins. In contrast to other members of the family, recombinant PAD6 was previously found to be catalytically inactive. We sought to provide structural insight into the human homologue to shed light on this observation. We report here the first crystal structure of PAD6, determined at 1.7 Å resolution. PAD6 follows the same domain organization as other structurally known PAD isoenzymes. Further structural analysis and size-exclusion chromatography show that PAD6 behaves as a homodimer similar to PAD4. Differential scanning fluorimetry suggests that PAD6 does not coordinate Ca<sup>2+</sup> which agrees with acidic residues found to coordinate Ca<sup>2+</sup> in other PAD homologs not being conserved in PAD6. The crystal structure of PAD6 shows similarities with the inactive state of <em>apo</em> PAD2, in which the active site conformation is unsuitable for catalytic citrullination. The putative active site of PAD6 adopts a non-productive conformation that would not allow protein–substrate binding due to steric hindrance with rigid secondary structure elements. This observation is further supported by the lack of activity on the histone H3 and cytokeratin 5 substrates. These findings suggest a different mechanism for enzymatic activation compared with other PADs; alternatively, PAD6 may exert a non-enzymatic function in the cytoplasmic lattice of oocytes and early embryos.</p></div>","PeriodicalId":14775,"journal":{"name":"IUCrJ","volume":"11 3","pages":"Pages 395-404"},"PeriodicalIF":2.9000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IUCrJ","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S2052252524000289","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The human peptidylarginine deiminase type VI (PAD6) is essential in oocyte and embryonic development as a component of the supramolecular assemblies called cytoplasmic lattices. The crystal structure presented here suggests PAD6 assembles as a dimer resembling other PADs, albeit with compromised abilities to bind Ca2+ and substrates. This aligns with existing in vitro data which indicate an enzymatically inactive isoform of PAD.
Human peptidylarginine deiminase isoform VI (PAD6), which is predominantly limited to cytoplasmic lattices in the mammalian oocytes in ovarian tissue, is essential for female fertility. It belongs to the peptidylarginine deiminase (PAD) enzyme family that catalyzes the conversion of arginine residues to citrulline in proteins. In contrast to other members of the family, recombinant PAD6 was previously found to be catalytically inactive. We sought to provide structural insight into the human homologue to shed light on this observation. We report here the first crystal structure of PAD6, determined at 1.7 Å resolution. PAD6 follows the same domain organization as other structurally known PAD isoenzymes. Further structural analysis and size-exclusion chromatography show that PAD6 behaves as a homodimer similar to PAD4. Differential scanning fluorimetry suggests that PAD6 does not coordinate Ca2+ which agrees with acidic residues found to coordinate Ca2+ in other PAD homologs not being conserved in PAD6. The crystal structure of PAD6 shows similarities with the inactive state of apo PAD2, in which the active site conformation is unsuitable for catalytic citrullination. The putative active site of PAD6 adopts a non-productive conformation that would not allow protein–substrate binding due to steric hindrance with rigid secondary structure elements. This observation is further supported by the lack of activity on the histone H3 and cytokeratin 5 substrates. These findings suggest a different mechanism for enzymatic activation compared with other PADs; alternatively, PAD6 may exert a non-enzymatic function in the cytoplasmic lattice of oocytes and early embryos.
期刊介绍:
IUCrJ is a new fully open-access peer-reviewed journal from the International Union of Crystallography (IUCr).
The journal will publish high-profile articles on all aspects of the sciences and technologies supported by the IUCr via its commissions, including emerging fields where structural results underpin the science reported in the article. Our aim is to make IUCrJ the natural home for high-quality structural science results. Chemists, biologists, physicists and material scientists will be actively encouraged to report their structural studies in IUCrJ.