{"title":"Does the Too-Big-To-Fail status affect depositor’s discipline: a Gaussian mixture model algorithm approach","authors":"Arushi Jain","doi":"10.1108/jrf-09-2023-0222","DOIUrl":null,"url":null,"abstract":"PurposeThis study empirically demonstrates a contradiction between pillar 3 of Basel norms III and the designation of Systemically Important Banks (SIBs), also known as Too Big to Fail (TBTF). The objective of this study is threefold, which has been approached in a phased manner. The first is to determine the systemic importance of the banks under study; second, to examine if market discipline exists at different levels of systemic importance of banks and lastly, to examine if the strength of market discipline varies at different levels of systemic importance.Design/methodology/approachThis study is based on all the public and private sector banks operating in the Indian banking sector. The Gaussian Mixture Model algorithm has been utilized to classify banks into distinct levels of systemic importance. Thereafter, market discipline has been observed by analyzing depositors' sentiments toward banks' risk (CAMEL indicators). The analysis has been performed by employing the system Generalized Method of Moments (GMM) to estimate models with different dependent variables.FindingsThe findings affirm the existence of market discipline across all levels of systemic importance. However, the strength of market discipline varies with the systemic importance of the banks, with weak market discipline being a negative externality of the SIBs designation.Originality/valueBy employing the Gaussian Mixture Model algorithm to develop a framework for categorizing banks on the basis of their systemic importance, this study is the first to go beyond the conventional method as outlined by the Reserve Bank of India (RBI).","PeriodicalId":22869,"journal":{"name":"The Journal of Risk Finance","volume":"43 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Risk Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/jrf-09-2023-0222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
PurposeThis study empirically demonstrates a contradiction between pillar 3 of Basel norms III and the designation of Systemically Important Banks (SIBs), also known as Too Big to Fail (TBTF). The objective of this study is threefold, which has been approached in a phased manner. The first is to determine the systemic importance of the banks under study; second, to examine if market discipline exists at different levels of systemic importance of banks and lastly, to examine if the strength of market discipline varies at different levels of systemic importance.Design/methodology/approachThis study is based on all the public and private sector banks operating in the Indian banking sector. The Gaussian Mixture Model algorithm has been utilized to classify banks into distinct levels of systemic importance. Thereafter, market discipline has been observed by analyzing depositors' sentiments toward banks' risk (CAMEL indicators). The analysis has been performed by employing the system Generalized Method of Moments (GMM) to estimate models with different dependent variables.FindingsThe findings affirm the existence of market discipline across all levels of systemic importance. However, the strength of market discipline varies with the systemic importance of the banks, with weak market discipline being a negative externality of the SIBs designation.Originality/valueBy employing the Gaussian Mixture Model algorithm to develop a framework for categorizing banks on the basis of their systemic importance, this study is the first to go beyond the conventional method as outlined by the Reserve Bank of India (RBI).