AlGaN/GaN MOS-HEMT enabled optoelectronic artificial synaptic devices for neuromorphic computing

Jiaxiang Chen, Haitao Du, Haolan Qu, Han Gao, Yitian Gu, Yitai Zhu, Wenbo Ye, Jun Zou, Hongzhi Wang, Xinbo Zou
{"title":"AlGaN/GaN MOS-HEMT enabled optoelectronic artificial synaptic devices for neuromorphic computing","authors":"Jiaxiang Chen, Haitao Du, Haolan Qu, Han Gao, Yitian Gu, Yitai Zhu, Wenbo Ye, Jun Zou, Hongzhi Wang, Xinbo Zou","doi":"10.1063/5.0194083","DOIUrl":null,"url":null,"abstract":"Artificial optoelectronic synaptic transistors have attracted extensive research interest as an essential component for neuromorphic computing systems and brain emulation applications. However, performance challenges still remain for synaptic devices, including low energy consumption, high integration density, and flexible modulation. Employing trapping and detrapping relaxation, a novel optically stimulated synaptic transistor enabled by the AlGaN/GaN hetero-structure metal-oxide semiconductor high-electron-mobility transistor has been successfully demonstrated in this study. Synaptic functions, including excitatory postsynaptic current (EPSC), paired-pulse facilitation index, and transition from short-term memory to long-term memory, are well mimicked and explicitly investigated. In a single EPSC event, the AlGaN/GaN synaptic transistor shows the characteristics of low energy consumption and a high signal-to-noise ratio. The EPSC of the synaptic transistor can be synergistically modulated by both optical stimulation and gate/drain bias. Moreover, utilizing a convolution neural network, hand-written digit images were used to verify the data preprocessing capability for neuromorphic computing applications.","PeriodicalId":502250,"journal":{"name":"APL Machine Learning","volume":"51 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0194083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial optoelectronic synaptic transistors have attracted extensive research interest as an essential component for neuromorphic computing systems and brain emulation applications. However, performance challenges still remain for synaptic devices, including low energy consumption, high integration density, and flexible modulation. Employing trapping and detrapping relaxation, a novel optically stimulated synaptic transistor enabled by the AlGaN/GaN hetero-structure metal-oxide semiconductor high-electron-mobility transistor has been successfully demonstrated in this study. Synaptic functions, including excitatory postsynaptic current (EPSC), paired-pulse facilitation index, and transition from short-term memory to long-term memory, are well mimicked and explicitly investigated. In a single EPSC event, the AlGaN/GaN synaptic transistor shows the characteristics of low energy consumption and a high signal-to-noise ratio. The EPSC of the synaptic transistor can be synergistically modulated by both optical stimulation and gate/drain bias. Moreover, utilizing a convolution neural network, hand-written digit images were used to verify the data preprocessing capability for neuromorphic computing applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于神经形态计算的 AlGaN/GaN MOS-HEMT 光电人工突触器件
人工光电突触晶体管作为神经形态计算系统和大脑仿真应用的重要组成部分,已经引起了广泛的研究兴趣。然而,突触器件的性能仍面临挑战,包括低能耗、高集成度和灵活调制。本研究利用捕获和解捕获弛豫,成功演示了由氮化铝/氮化镓异质结构金属氧化物半导体高电子迁移率晶体管实现的新型光刺激突触晶体管。该研究很好地模拟并明确研究了突触功能,包括兴奋性突触后电流(EPSC)、成对脉冲促进指数以及从短期记忆到长期记忆的过渡。在单次 EPSC 事件中,AlGaN/GaN 突触晶体管表现出低能耗和高信噪比的特点。突触晶体管的 EPSC 可同时受到光刺激和栅极/漏极偏置的协同调制。此外,利用卷积神经网络,手写数字图像被用来验证神经形态计算应用的数据预处理能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Computational experiments with cellular-automata generated images reveal intrinsic limitations of convolutional neural networks on pattern recognition tasks Simulation-trained machine learning models for Lorentz transmission electron microscopy Enhanced spectrum prediction using deep learning models with multi-frequency supplementary inputs Cell detection with convolutional spiking neural network for neuromorphic cytometry The development of thermodynamically consistent and physics-informed equation-of-state model through machine learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1