Developing Exp-FIGARCH Hybrid Models for Time Series Modelling

S. A. Jibrin, A. Osi, Shukurana Shehu
{"title":"Developing Exp-FIGARCH Hybrid Models for Time Series Modelling","authors":"S. A. Jibrin, A. Osi, Shukurana Shehu","doi":"10.4314/dujopas.v10i1c.8","DOIUrl":null,"url":null,"abstract":"In this paper, we introduced a new hybrid model namely Exponential Autoregressive-Fractional Integrated Generalized Autoregressive  Conditional Heteroscedasticity (ExpAR-FIGARCH) model and study financial data. The Daily Nigeria All Share Stock Index that exhibit  nonlinear, volatility and long memory effect were analyzed in the study. The existing ExpAR-Generalized Autoregressive Conditional  Heteroscedasticity (ExpAR-GARCH) model were estimated and compared with the proposed ExpAR-FIGARCHmodel. Results showed that  the new hybrid model is better based on efficient parameters, serial correlation analysis and forecast measures of accuracy. Therefore, as  a conclusion, the current study indicates that the ExpAR-FIGARCHmodel performed better compared to the ExpAR-GARCHhybrid  model. Therefore, the ExpAR-FIGARCHmodel is a better option for modeling nonlinear, volatility and long memory characteristics of time  series. Future study should focus on the application of the developed hybrid ExpAR-FIGARCHmodel using health, meteorological and  economic data. ","PeriodicalId":479620,"journal":{"name":"Dutse Journal of Pure and Applied Sciences","volume":"31 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dutse Journal of Pure and Applied Sciences","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.4314/dujopas.v10i1c.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we introduced a new hybrid model namely Exponential Autoregressive-Fractional Integrated Generalized Autoregressive  Conditional Heteroscedasticity (ExpAR-FIGARCH) model and study financial data. The Daily Nigeria All Share Stock Index that exhibit  nonlinear, volatility and long memory effect were analyzed in the study. The existing ExpAR-Generalized Autoregressive Conditional  Heteroscedasticity (ExpAR-GARCH) model were estimated and compared with the proposed ExpAR-FIGARCHmodel. Results showed that  the new hybrid model is better based on efficient parameters, serial correlation analysis and forecast measures of accuracy. Therefore, as  a conclusion, the current study indicates that the ExpAR-FIGARCHmodel performed better compared to the ExpAR-GARCHhybrid  model. Therefore, the ExpAR-FIGARCHmodel is a better option for modeling nonlinear, volatility and long memory characteristics of time  series. Future study should focus on the application of the developed hybrid ExpAR-FIGARCHmodel using health, meteorological and  economic data. 
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
为时间序列建模开发 Exp-FIGARCH 混合模型
本文引入了一种新的混合模型,即指数自回归-分数综合广义自回归条件异方差(ExpAR-FIGARCH)模型,并对金融数据进行了研究。研究分析了尼日利亚每日所有股票指数,该指数表现出非线性、波动性和长记忆效应。对现有的 ExpAR-GARCH 模型进行了估算,并与提出的 ExpAR-FIGARCH 模型进行了比较。结果表明,新的混合模型在有效参数、序列相关性分析和预测准确度方面更胜一筹。因此,作为结论,本研究表明,ExpAR-FIGARCH 模型与 ExpAR-GARCH 混合模型相比表现更好。因此,ExpAR-FIGARCH 模型是对时间序列的非线性、波动性和长记忆特征进行建模的更好选择。今后的研究应侧重于利用健康、气象和经济数据应用所开发的 ExpAR-FIGARCH 混合模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On Some Demographic Structures and Economic Growth in Nigeria (2003–2022) The Dynamical Equations of the Restricted Three-Body Problem with Poynting-Robertson Drag Force and Variable Masses Screening for Potential Antioxidants from Chrozophora senegalensis Crude Extract Systematic Assessment of Bottomland Resources Influenced by Waste Disposal Comparison of the Nutraceutical Potential of Ziziphus spina Christi and Parkia biglobosa Fruits
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1