Bilateral Crosslinking with Glutaraldehyde and 1-Ethyl-3-(3-Dimethylaminopropyl) Carbodiimide: An Optimization Strategy for the Application of Decellularized Human Amniotic Membrane in Tissue Engineering

IF 3.1 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Journal of Tissue Engineering and Regenerative Medicine Pub Date : 2024-04-24 DOI:10.1155/2024/8525930
Fatemeh Alibabaei-Omran, Ebrahim Zabihi, Alexander M. Seifalian, Nima Javanmehr, Ali Samadikuchaksaraei, Mazaher Gholipourmalekabadi, Mohammad Hossein Asghari, Hamid Reza Nouri, Roghayeh Pourbagher, Zinatossadat Bouzari, Seyedali Seyedmajidi
{"title":"Bilateral Crosslinking with Glutaraldehyde and 1-Ethyl-3-(3-Dimethylaminopropyl) Carbodiimide: An Optimization Strategy for the Application of Decellularized Human Amniotic Membrane in Tissue Engineering","authors":"Fatemeh Alibabaei-Omran,&nbsp;Ebrahim Zabihi,&nbsp;Alexander M. Seifalian,&nbsp;Nima Javanmehr,&nbsp;Ali Samadikuchaksaraei,&nbsp;Mazaher Gholipourmalekabadi,&nbsp;Mohammad Hossein Asghari,&nbsp;Hamid Reza Nouri,&nbsp;Roghayeh Pourbagher,&nbsp;Zinatossadat Bouzari,&nbsp;Seyedali Seyedmajidi","doi":"10.1155/2024/8525930","DOIUrl":null,"url":null,"abstract":"<div>\n <p><i>Introduction</i>. The decellularized human amniotic membrane (dHAM) emerges as a viable 3D scaffold for organ repair and replacement using a tissue engineering strategy. Glutaraldehyde (GTA) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) can increase the biomechanical properties of dHAM. However, the crosslinking process is associated with biochemical changes and residual toxic materials, dampening the biocompatibility of the dHAM. From a histologic point of view, each side of the amniotic membrane is biologically different. While the dHAM basement membrane side is rich in growth factors, the stromal side of the dHAM contains more connective tissue matrix (e.g., collagen fibers) which supports its biomechanical properties. Biocompatibility and biomechanical properties are two important challenges in the field of materials science. In this study, for the first time, the stromal and basement membrane side are cross-linked with GTA and EDC, respectively, to optimize the biocompatibility of the treated dHAM while sparing the GTA-mediated biomechanical improvements. <i>Methods</i>. Crosslinking was carried out on dHAM in three groups: EDC, GTA and bilateral treatment with EDC&amp;GTA. Mechanical resistance, degradability, and crosslinking measurements were performed on treated dHAM. The viability of mesenchymal stem cells (MSCs) on the scaffolds was evaluated by the MTT assay. The expression levels of surface markers and images of the MSCs were thoroughly studied. <i>Results</i>. The results obtained showed that bilateral treatment of dHAM with EDC and GTA increased mechanical resistance. Similarly, the evaluation of surface markers revealed that bilaterally treated dHAM sustains the stemness and viability of MSCs at a level equal to that achieved with EDC alone. The SEM images indicated that the MSCs maintained adhesion on EDC&amp;GTA-cross-linked dHAM. <i>Conclusion</i>. The current study explores a pioneering treatment of dHAM, a material long recognized for its regenerative properties, in a novel context. This research delves into the utilization of dHAM cross-linked with EDC&amp;GTA, demonstrating its optimized efficacy in tissue engineering. The enhanced crosslinking technique significantly alters the membrane’s properties, amplifying its durability and therapeutic potential. In this novel bilateral treatment strategy (EDC and GTA), improving mechanical properties by GTA on the stromal surface and maintaining the biocompatibility of EDC on the side of the basement membrane of dHAM had been attained together. By investigating the handling and impact of this cross-linked membrane, this study unveils a new approach in leveraging a well-known material through an innovative process, revolutionizing its application in wound care.</p>\n </div>","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"2024 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/8525930","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Tissue Engineering and Regenerative Medicine","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/8525930","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction. The decellularized human amniotic membrane (dHAM) emerges as a viable 3D scaffold for organ repair and replacement using a tissue engineering strategy. Glutaraldehyde (GTA) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) can increase the biomechanical properties of dHAM. However, the crosslinking process is associated with biochemical changes and residual toxic materials, dampening the biocompatibility of the dHAM. From a histologic point of view, each side of the amniotic membrane is biologically different. While the dHAM basement membrane side is rich in growth factors, the stromal side of the dHAM contains more connective tissue matrix (e.g., collagen fibers) which supports its biomechanical properties. Biocompatibility and biomechanical properties are two important challenges in the field of materials science. In this study, for the first time, the stromal and basement membrane side are cross-linked with GTA and EDC, respectively, to optimize the biocompatibility of the treated dHAM while sparing the GTA-mediated biomechanical improvements. Methods. Crosslinking was carried out on dHAM in three groups: EDC, GTA and bilateral treatment with EDC&GTA. Mechanical resistance, degradability, and crosslinking measurements were performed on treated dHAM. The viability of mesenchymal stem cells (MSCs) on the scaffolds was evaluated by the MTT assay. The expression levels of surface markers and images of the MSCs were thoroughly studied. Results. The results obtained showed that bilateral treatment of dHAM with EDC and GTA increased mechanical resistance. Similarly, the evaluation of surface markers revealed that bilaterally treated dHAM sustains the stemness and viability of MSCs at a level equal to that achieved with EDC alone. The SEM images indicated that the MSCs maintained adhesion on EDC&GTA-cross-linked dHAM. Conclusion. The current study explores a pioneering treatment of dHAM, a material long recognized for its regenerative properties, in a novel context. This research delves into the utilization of dHAM cross-linked with EDC&GTA, demonstrating its optimized efficacy in tissue engineering. The enhanced crosslinking technique significantly alters the membrane’s properties, amplifying its durability and therapeutic potential. In this novel bilateral treatment strategy (EDC and GTA), improving mechanical properties by GTA on the stromal surface and maintaining the biocompatibility of EDC on the side of the basement membrane of dHAM had been attained together. By investigating the handling and impact of this cross-linked membrane, this study unveils a new approach in leveraging a well-known material through an innovative process, revolutionizing its application in wound care.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
戊二醛和 1-乙基-3-(3-二甲基氨基丙基)碳二亚胺的双边交联:脱细胞人羊膜在组织工程中应用的优化策略
简介。脱细胞人羊膜(dHAM)是利用组织工程策略进行器官修复和替代的一种可行的三维支架。戊二醛(GTA)和 1-乙基-3-(3-二甲基氨基丙基)碳二亚胺(EDC)可提高 dHAM 的生物力学特性。然而,交联过程与生化变化和残留有毒物质有关,会降低 dHAM 的生物相容性。从组织学的角度来看,羊膜的每一面在生物学上都是不同的。羊膜基底膜一侧含有丰富的生长因子,而羊膜基质一侧则含有更多的结缔组织基质(如胶原纤维),从而支持其生物力学特性。生物相容性和生物力学特性是材料科学领域的两大挑战。在本研究中,首次分别用 GTA 和 EDC 交联基质膜和基底膜侧,以优化处理后 dHAM 的生物相容性,同时避免 GTA 介导的生物力学改善。方法。分三组对 dHAM 进行交联:EDC、GTA 和使用 EDC>A 的双侧处理。对处理后的 dHAM 进行机械阻力、降解性和交联测量。间充质干细胞(MSCs)在支架上的存活率通过 MTT 试验进行了评估。对间充质干细胞表面标志物的表达水平和图像进行了深入研究。结果显示结果表明,用 EDC 和 GTA 对 dHAM 进行双边处理可增加机械阻力。同样,对表面标记的评估显示,经双侧处理的 dHAM 可维持间充质干细胞的干性和活力,其水平与单独使用 EDC 所达到的水平相当。扫描电子显微镜图像显示,间充质干细胞在 EDC>A 交联的 dHAM 上保持了粘附性。结论dHAM 是一种长期以来被公认具有再生特性的材料,当前的研究探索了在新背景下对 dHAM 进行处理的开创性方法。这项研究深入探讨了与 EDC>A 交联的 dHAM 的使用,展示了其在组织工程中的最佳功效。增强型交联技术大大改变了膜的特性,增强了其耐久性和治疗潜力。在这种新型的双边处理策略(EDC 和 GTA)中,基质表面的 GTA 可改善机械性能,而 dHAM 基底膜一侧的 EDC 可保持生物相容性。通过研究这种交联膜的处理方法和影响,本研究揭示了一种通过创新工艺利用知名材料的新方法,从而彻底改变了其在伤口护理中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.50
自引率
3.00%
发文量
97
审稿时长
4-8 weeks
期刊介绍: Journal of Tissue Engineering and Regenerative Medicine publishes rapidly and rigorously peer-reviewed research papers, reviews, clinical case reports, perspectives, and short communications on topics relevant to the development of therapeutic approaches which combine stem or progenitor cells, biomaterials and scaffolds, growth factors and other bioactive agents, and their respective constructs. All papers should deal with research that has a direct or potential impact on the development of novel clinical approaches for the regeneration or repair of tissues and organs. The journal is multidisciplinary, covering the combination of the principles of life sciences and engineering in efforts to advance medicine and clinical strategies. The journal focuses on the use of cells, materials, and biochemical/mechanical factors in the development of biological functional substitutes that restore, maintain, or improve tissue or organ function. The journal publishes research on any tissue or organ and covers all key aspects of the field, including the development of new biomaterials and processing of scaffolds; the use of different types of cells (mainly stem and progenitor cells) and their culture in specific bioreactors; studies in relevant animal models; and clinical trials in human patients performed under strict regulatory and ethical frameworks. Manuscripts describing the use of advanced methods for the characterization of engineered tissues are also of special interest to the journal readership.
期刊最新文献
Challenges and Advances in Peripheral Nerve Tissue Engineering Critical Factors Affecting Nerve Regeneration Polycaprolactone Fiber and Laminin and Collagen IV Protein Incorporation in Implants Enhances Wound Healing in a Novel Mouse Skin Splint Model Herpesvirus-Entry Mediator Inhibits the NF-κB Pathway Activated by IL-17 and Fosters the Osteogenic Differentiation of Allogeneic Mesenchymal Stem Cells Decellularisation and Characterisation of Porcine Pleura as Bioscaffolds in Tissue Engineering Harnessing the Regenerative Potential of Fetal Mesenchymal Stem Cells and Endothelial Colony-Forming Cells in the Biofabrication of Tissue-Engineered Vascular Grafts (TEVGs)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1