Mike Fazzino, Ummay Habiba, Lukasz Kuna, Serge Nakhmanson, Rainer J. Hebert
{"title":"Calibration of particle interactions for discrete element modeling of powder flow","authors":"Mike Fazzino, Ummay Habiba, Lukasz Kuna, Serge Nakhmanson, Rainer J. Hebert","doi":"10.1007/s40571-024-00739-6","DOIUrl":null,"url":null,"abstract":"<div><p>An ASTM B213 standard Hall Flowmeter Funnel experiment was conducted for Ti 6–4 powder particles and simulated utilizing a discrete element method approach implemented in the LIGGGHTS package. Particle interactions were described with a modified simplified Johnson–Kendall–Roberts theory that includes adhesion as a function of the particle surface free energy. Experimental data for the powder particle size distribution were used as input for the simulations. Adjustable parameters, such as cohesion energy density, coefficient of restitution and dynamic friction, were tuned to match the general shape of the experimentally obtained particle pile. Geometrical properties of the simulated powder pile, including its diameter, height and inside/outside slope angles, were computed and compared with the experimental results where available. Local particle size distributions for different areas within the pile (top vs. bottom) were obtained, indicating the dominance of larger particles at the top of the pile, akin to the Brazil nut effect.</p></div>","PeriodicalId":524,"journal":{"name":"Computational Particle Mechanics","volume":"11 4","pages":"1517 - 1527"},"PeriodicalIF":2.8000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Particle Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s40571-024-00739-6","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
An ASTM B213 standard Hall Flowmeter Funnel experiment was conducted for Ti 6–4 powder particles and simulated utilizing a discrete element method approach implemented in the LIGGGHTS package. Particle interactions were described with a modified simplified Johnson–Kendall–Roberts theory that includes adhesion as a function of the particle surface free energy. Experimental data for the powder particle size distribution were used as input for the simulations. Adjustable parameters, such as cohesion energy density, coefficient of restitution and dynamic friction, were tuned to match the general shape of the experimentally obtained particle pile. Geometrical properties of the simulated powder pile, including its diameter, height and inside/outside slope angles, were computed and compared with the experimental results where available. Local particle size distributions for different areas within the pile (top vs. bottom) were obtained, indicating the dominance of larger particles at the top of the pile, akin to the Brazil nut effect.
期刊介绍:
GENERAL OBJECTIVES: Computational Particle Mechanics (CPM) is a quarterly journal with the goal of publishing full-length original articles addressing the modeling and simulation of systems involving particles and particle methods. The goal is to enhance communication among researchers in the applied sciences who use "particles'''' in one form or another in their research.
SPECIFIC OBJECTIVES: Particle-based materials and numerical methods have become wide-spread in the natural and applied sciences, engineering, biology. The term "particle methods/mechanics'''' has now come to imply several different things to researchers in the 21st century, including:
(a) Particles as a physical unit in granular media, particulate flows, plasmas, swarms, etc.,
(b) Particles representing material phases in continua at the meso-, micro-and nano-scale and
(c) Particles as a discretization unit in continua and discontinua in numerical methods such as
Discrete Element Methods (DEM), Particle Finite Element Methods (PFEM), Molecular Dynamics (MD), and Smoothed Particle Hydrodynamics (SPH), to name a few.